SOS -+

Reference Manual, Volume 1

Apple Il

Contents

Volume 1: How SOS Works

Figures and Tables xi
Preface Xvii
xvii Scope Of This Manual
xvili Using this Manual
xviii About the Examples
xviii Notation and Symbols
xviii Numeric Notation
Xix Special Symbols
1 The Abstract Machine 1

2
2
2
3
3
5
5
6
7
8
8

1.1 About Operating Systems
1.1.1 An Abstract Machine
1.1.2 A Resource Manager
1.1.3 A Common Foundation for Software

1.2 Overview of the Apple
1.2.1 The Interpreter
1.2.2 SOS
1.2.3 Memory
1.2.4 Files
1.2.5 Devices
1.2.6 The 6502 Instruction Set

SOS Reference Manual

2 Programs and Memory 9

10 2.1 Addressing Modes

10 2.1.1 Bank-Switched Memory Addressing
13 2.1.2 Enhanced Indirect Addressing

16 2.2 Execution Environments

17 2.2.1 Zero Page and Stack

18 2.2.2 The Interpreter Environment

19 2.2.3 SOS Kernel Environment

20 2.2.4 SOS Device Driver Environment

22 2.2.5 Environment Summary

23 2.3 Segment Address Notation

25 2.3.1 Memory Calls

27 2.4 Memory Access Techniques

27 2.4.1 Subroutine and Module Addressing
29 2.4.2 Data Access

30 2.4.2.1 Bank-Switched Addressing
31 2.4.2.2 Enhanced Indirect Addressing
32 2.4.3 Address Conversion

33 2.4.3.1 Segment to Bank-Switched
33 2.4.3.2 Segment to Extended

34 2.4.3.3 Extended to Bank-Switched
36 2.4.4 Pointer Manipulation

36 2.4.4.1 Incrementing a Pointer

37 2.4.4.2 Comparing Two Pointers

38 245 Summary of Address Storage

Contents

3 Devices 39

40 3.1 Devices and Drivers

40 3.1.1 Block and Character Devices
40 3.1.2 Physical Devices and Logical Devices
1 3.1.3 Device Drivers and Driver Modules
41 3.1.4 Device Names
43 3.2 The SOS Device System
43 3.3 Device Information
45 3.4 Operations on Devices
46 3.5 Device Calls
4 Files a9
50 4.1 Character and Block Files
50 4.1.1 Structure of Character and Block Files
52 4.1.2 Open and Closed Files
53 4.1.3 Volumes
54 4.1.3.1 Volume Switching
55 4.1.3.2 Volume Names
56 4.2 The SOS File System
57 4.2.1 Directory Files and Standard Files
58 4.2.2 File Names
59 4.2.3 Pathnames
61 4.2.4 The Prefix and Partial Pathnames
62 4.3 File and Access Path Information
62 43.1 File Information
64 4.3.2 Access Path Information
67 4.3.3 Newline Mode Information
68 4.4 Operations on Files
69 4.5 File Calls

SOS Reference Manual

5 File Organization on Block Devices 75

77 5.1 Format of Information on a Volume (SOS 1.2)
78 5.2 Format of Directory Files

79 5.2.1 Pointer Fields

79 5.2.2 Volume Directory Headers

82 5.2.3 Subdirectory Headers

85 5.2.4 File Entries

89 5.2.5 Field Formats in Detail

89 5.2.5.1 The storage_type Field

89 5.2.5.2 The creation and last_mod Fields
90 5.2.56.3 The access Attributes

N 5.2.5.4 The file_type Field

91 5.2.6 Reading a Directory File

92 5.3 Storage Formats of Standard Files

92 5.3.1 Growing a Tree File

95 5.3.2 Seedling Files

95 5.3.3 Sapling Files

96 5.3.4 Tree Files

97 5.3.5 Sparse Files

98 5.3.6 Locating a Byte in a Standard File
99 5.4 Chapter Overview

6 Events and Resources 103

104 6.1 Interrupts and Events

108 6.1.1 Arming and Disarming Events
108 6.1.2 The Event Queue

109 6.1.3 The Event Fence

110 6.1.4 EventHandlers

112 6.1.5 Summary of Interrupts and Events
112 6.2 Resources

112 6.2.1 The Clock

113 6.2.2 The Analog Inputs

114 6.2.3 TERMINATE

114 6.3 Utility Calls

7 Interpreters and Modules 17

118 7.1 Interpreters
119 7.1.1 Structure of an Interpreter
121 7.1.2 Obtaining Free Memory
125 7.1.3 Event Arming and Response
125 7.2 A Sample Interpreter
131 7.2.1 Complete Sample Listing
143 7.3 Creating Interpreter Files
143 7.4 Assembly-Language Modules
144 7.4.1 Using Your Own Modules
145 7.4.2 BASIC and Pascal Modules
146 74.3 Creating Modules
8 Making SOS Calls 147
148 8.1 Types of SOS Calls
148 8.2 Form of a SOS Call
148 8.2.1 The Call Block
150 8.2.2 The Required Parameter List
152 8.2.3 The Optional Parameter List
154 8.3 Pointer Address Extension
155 8.3.1 Direct Pointers
155 8.3.1.1 Direct Pointers to X-Bank Locations
156 8.3.1.2 Direct Pointers to Current Bank Locations
156 8.3.2 Indirect Pointers
157 8.3.2.1 Indirect Pointers with an X-Byte of $00
158 8.3.2.2 Indirect Pointers with an X-Byte Between $80
and $8F
159 8.4 Name Parameters
160 8.5 SOS Call Error Reporting

Index 163

viil SOS Reference Manual

Volume 2: The SOS Calls

Figures and Tables vii

Preface ix

9 File Calls and Errors 1
2 9.1 FileCalls

53 9.2 File Call Errors

10 Device Calls and Errors 57

58 10.1 Device Calls
71 10.2 Device Call Errors

11 Memory Calls and Errors 73

74 11.1 Memory Calls
88 11.2 Memory Call Errors

12 Utility Calls and Errors 89

90 12.1 Utility Calls
104 12.2 Utility Call Errors

Contents

SOS Specifications 105

106
106
106
106
106
107
108
108
109
109
109
109

Version

Classification

CPU Architecture

System Calls

File Management System
Device Management System
Memory/Buffer Management System
Additional System Functions
Interrupt Management System
Event Management System
System Configuration
Standard Device Drivers

ExerSOS 113

114
117
118
119

B.1 Using ExerSOS
B.2 The Data Buffer
B.3 The String Buffer
B.4 Leaving ExerSOS

Make Interp 121

Error Messages 123

124
126
128

D.1 Non-Fatal SOS Errors
D.2 Fatal SOS Errors
D.3 Bootstrap Errors

SOS Reference Manual

E Data Formats of Assembly-Language
Code Files 131

132 E.1 Code File Organization
134 E.2 The Segment Dictionary
135 E.3 The Code Part of a Code File

Bibliography 141
Index 143

Figures and Tables

Figures and Tables

Volume 1: How SOS Works

Preface Xvii

xix Table 0-1 Numeric Notation

1 The Abstract Machine 1

4 Figure 1-1 The Apple 111/SOS Abstract Machine

2 Programs and Memory 9

11 Figure2-1 Bank-Switched Memory Addressing

12 Figure2-2 Switching in Another Bank

14 Figure2-3 X-byte Format

14 Figure2-4 Enhanced Indirect Addressing

18 Figure2-5 Interpreter Memory Placement

20 Figure2-6 SOS Kernel Memory Placement

21 Figure2-7 SOS Device Driver Memory Placement
23 Figure2-8 Free Memory

24 Figure2-9 Segment Address Notation

36 Figure2-10 Increment Path

xii

SOS Reference Manual

13 Table 2-1 Addresses in Bank-Switched Notation
16 Table 2-2 Extended Addresses
19 Table 2-3 Interpreter Environment
20 Table2-4 SOS Kernel Environment
21 Table2-5 SOS Device Driver Environment
22 Table 2-6 Environment Summary
24 Table 2-7 Addresses in Segment Notation
25 Table2-8 Addresses in Segment Notation, S-Bank
3 Devices 39
42 Figure3-1 Device Name Syntax
43 Figure3-2 The SOS Device System
4 Files 49
51 Figure4-1 Character File Model
51 Figure4-2 Block File Model
52 Figure4-3 Open Files
55 Figure4-4 The SOS Disk Request
57 Figure4-5 Top-Level Files
58 Figure4-6 The SOS File System
59 Figure4-7 File Name Syntax
60 Figure4-8 Pathname Syntax
61 Figure4-9 Pathnames
65 Figure4-10 Automatic Movement of EOF and Mark
66 Figure4-11 Manual Movement of EOF and Mark

Figures and Tables

5 File Organization on Block Devices 75

77 Figure5-1 Blocks on aVolume
78 Figure5-2 Directory File Format
80 Figure5-3 The Volume Directory Header
83 Figure5-4 The Subdirectory Header
86 Figure5-5 The File Entry
90 Figure5-6 Date and Time Format
90 Figure5-7 The access Attribute Field
95 Figure5-8 Structure of a Seedling File
96 Figure5-9 Structure of a Sapling File
96 Figure5-10 The Structure of a Tree File
98 Figure5-11 A Sparse File
99 Figure5-12 Format of mark

100 Figure 5-13 Disk Organization

102 Figure 5-14 Header and Entry Fields

6 Events and Resources 103

106 Figure6-1 Queuing An Event

106 Figure 6-2 Handling An Event: Case A

107 Figure6-3 Handling An Event: Case B

109 Figure6-4 The Event Queue

110 Figure6-5 The Event Fence

111 Figure 6-6 System Status during Event Handling

SOS Reference Manual

7 Interpreters and Modules 17

119 Figure 7-1 Structure of an Interpreter
144 Figure 7-2 Interpreter and Modules

8 Making SOS Calls 147

149 Figure 8-1 SOS Call Block

151 Figure 8-2 The Required Parameter List
153 Figure 8-3 Optional Parameter List

155 Figure 8-4 A Direct Pointer

157 Figure 8-5 An Indirect Pointer

159 Figure 8-6 Format of a Name Parameter

Figures and Tables

Volume 2: The SOS Calls

Preface

ix

x Figure0-1 Parts of the SOS Call
xi Figure0-2 TERMINATE Call Block

10 Device Calls and Errors 57

60 Figure 10-1 Block Device Status Request $00

60 Figure 10-2 Character Device Status Request $@1
61 Figure 10-3 Character Device Status Request $02
64 Figure 10-4 Character Device Control Code $@81
64 Figure 10-5 Character Device Control Code $02

E Data Formats of Assembly-Language
Code Files 131

133 Figure E-1 An Assembly-Language Code File

134 Figure E-2 A Segment Dictionary

135 FigureE-3 The Code Part of a Code File

137 Figure E-4 An Assembly-Language Procedure
Attribute Table

xvi SOS Reference Manual

Preface

For your convenience and ease of reference, this manual is divided into
two volumes. Volume 1: How SOS Works describes the operating system
of the Apple III. Volume 2: The SOS Calls defines the individual SOS callls.
Notice that the sequence of chapter numbers in Volume 1 continues
unchanged into Volume 2.

Scope of this Manual

This manual describes SOS (pronounced “sauce”), the Sophisticated
Operating System of the Apple IIl. With the information in this manual
you'll be able to write assembly-language programs that use the full
power of the Apple IlI.

However, this manual is not a course in assembly-language programming.
It assumes that you can program in assembly language and know the
architecture of the 6502 microprocessor upon which the Apple 111 is
based:; it will explain how the architecture of the Apple Il processor goes
beyond that of the standard 6502. If you need more information on 6502
assembly-language programming, refer to one of the books listed in the
bibliography of this manual.

The companion volume to this manual, the Apple I/l SOS Device Driver
Writer's Guide, contains the information you may need about the interface
hardware of the Apple I, and tells how to create device drivers to use that
hardware. If you wish to create custom interface software or hardware for
the Apple ll1, read the present manual before turning to the Apple I/l SOS
Device Driver Writer's Guide.

xviii SOS Reference Manual

Using this Manual

Before you begin with this manual, you should prepare yourself by
reading the following:

e the Apple Ill Owner’s Guide introduces you to some of the
fundamental features of the Apple lll—features that you will
be exploring more deeply in this manual;

e the Apple Il Standard Device Drivers Manual describes the
workings of the Apple III's video screen, keyboard, graphics,
and communications interfaces;

e the Apple Il Pascal Program Preparation Tools manual explains
the use of the Apple Il Pascal Assembler, which is the only
assembler that works with SOS.

You should also finish reading this preface, to learn about the notation and
examples used in this manual.

About the Examples

Included in this manual are many sample programs and code fragments.
These are intended as demonstrations only. In order to illustrate their
concepts as well as possible, they are written to be clear and concise,
without necessarily being efficient or comprehensive.

Notation and Symbols

Some special symbols and numeric notations are used throughout this
manual.

Numeric Notation

We assume that you are familiar with the hexadecimal (hex) numbering
system. All hexadecimal numbers in the text and tables of this manual are
preceded by a dollar sign ($). Any number in the text, a table, or
illustration that is not preceded by a dollar sign is a decimal number.

Preface xix

Program listings from the Apple IIl Pascal Assembler, however, do not
prefix hex numbers with dollar signs. In such listings, you can distinguish
decimal numbers from hex by the fact that decimal numbers end with a
decimal point (. }. You can distinguish hex numbers from labels by the fact
that hex numbers always begin with a digit from @ to 9, and labels always
begin with a letter.

Type Notation in Text Notation in Listings
Decimal 255 255.

Hexadecimal $3A5 3A5

Hexadecimal $BAD1 ?BAD1

Label BAD1 BAD1

Table 0-1. Numeric Notation

Additional notations are introduced in Chapter 1.

Special Symbols

Four special symbols are used in this manual to emphasize information
about helpful or unusual features of the system.

This symbol precedes a paragraph that contains especially useful
information.

Watch out! This symbol precedes a paragraph that warns you to
be careful.

Stop! This symbol precedes a paragraph warning you that you
are about to destroy data or harm hardware.

AEION0)

This symbol precedes a paragraph that is specific to versions 1.1,
1.2, and 1.3 of SOS. Note especially that, although the symbol
indicates version 1.2, it is also applicable to versions 1.1 and 1.3.

SOS Reference Manual

The Abstract Machine

The Abstract Machine

2 1.1 About Operating Systems
2 1.1.1 An Abstract Machine
2 1.1.2 A Resource Manager
3 1.1.3 A Common Foundation for Software
3 1.2 Overview of the Apple Il
5 1.2.1 The Interpreter
§ 1.2.2 SOS

6 1.2.3 Memory

7 1.2.4 Files

8 1.2.5 Devices

8 1.2.6 The 6502 Instruction Set

SOS Reference Manual

1.1 About Operating Systems

An operating system is the traffic controller of a computer system. A
well-designed operating system increases the power and usefulness of a
computer in three important ways. First, an operating system establishes
an abstract machine that is defined by its concepts and models, rather
than by the physical attributes of particular hardware. Second, it acts as
a resource manager, to ease the programming task. Finally, it provides

a common foundation for software.

If you are an experienced programmer of small computers,
such as the Apple I, but you have never written large programs
for a machine with an operating system, you should pay
particular attention to this section.

1.1.1 An Abstract Machine

The low-level programming language of a computer is determined
not only by its central processor, but by its operating system as well.
The operating system is thus an essential part of the programming
environment: knowing how it works lets you write programs that use
the full power of the machine.

Most importantly, the combination of hardware and operating system
software creates an abstract machine that is neither the hardware nor
the operating system, but a synthesis of both. This is the machine you
program.

The major advantage of the abstract-machine concept is that a program
written for the abstract machine is not bound by the current configuration
of the hardware. The operating system can compensate for expansions,
enhancements, or changes in hardware, making these changes invisible
to the programs. Thus programs properly written for an abstract machine
need not be modified to respond to changes or improvements in the
hardware.

1.1.2 A Resource Manager

An operating system also controls the flow of information into, out of,
and within the computer. It provides standard ways to store and retrieve

The Abstract Machine

information on storage devices, communicate with and control
input/output devices, and allocate memory to programs and data. It also
provides certain “housekeeping” functions, such as reading and setting
the system clock.

The operating system saves you work. You don't have to write your own
procedures for disk-access, communications, or memory-management:
the operating system performs such functions for you.

1.1.3 A Common Foundation for Software

An operating system also provides a common base on which to build
integrated applications. This, above all, promotes compatibility between
programs and data. If two programs use the same file structure and the
same memory-management techniques, it's much easier to make the
programs work with each other and share data. If all mass storage devices
support a common file structure, it is much easier for a program to expand
its capacity by substituting a larger device.

@ Any service provided by SOS is provided only by SOS. The
continued correct operation of your program under future

versions can be assured only if you use the services provided
and make no attempt to circumvent SOS.

1.2 Overview of the Apple Ili

The Apple 111/SOS Abstract Machine has six principal parts

(see Figure 1-1):
o An interpreter, which is the program executed at boot time;
® The operating system, SOS;

* Memory;

A set of files, for the storage and transfer of information;

A set of devices and drivers, for the communication of
information; and

¢ The 6502 instruction set, with extended addressing capabilities.

All of these rest on a base created by the hardware of the machine.

SOS Reference Manual

LI
1/0 HARDWARE
BUILT-IN [SLOTS

= i

/ PARALLEL \ R
'

PRINTER

MEMORY KERNEL
MANAGEMENT MANAGEMENT

8502 BRK INSTRUCTION SET

anann ﬂ OOOQN 1T\

v -
NTERPRETER —7

MEMORY

Figure 1-1. The Apple 111/SOS Abstract Machine

The rest of this section describes these parts in brief.

The Abstract Machine

1.2.1 The Interpreter

An interpreter is an assembly-language program that starts automatically
when SOS boots. Interpreters include the Business BASIC and Pascal
language interpreters, as well as the application program Apple Writer Il1.

Only one interpreter can reside in the system at a time. An interpreter

is loaded each time the system is booted; the system cannot operate
without an interpreter. In addition, language interpreters such as Pascal
and BASIC allow separate assembly-language routines, called modules,
to be loaded and executed.

An interpreter consists of 6502 assembly-language code, including SOS
calls. The construction and execution of interpreters and modules is
described in Chapter 7.

1.22 SOS

SOS is the operating system of the Apple Ill. It provides a standard
interface between the interpreter and the computer’s hardware.
An interpreter communicates with SOS by making subroutine-like
calls to SOS. SOS returns the results of each call to the interpreter.
SOS calls are of four types:

® File management calls read, write, create, and delete files.

e Device management calls read the status of a device or
control the device.

e Utility management calls provide access to the system clock,
joystick,and event fence.

e Memory management calls allocate and deallocate memory for
the interpreter.

SOS also controls all asynchronous operations of the computer, through
the mechanisms of interrupts and events, as described in Chapter 6. An
interrupt from a device is detected by SOS and handled, under the control
of SOS, by an interrupt handler in that device’s driver. An event is detected
by a device driver and handled, under the control of SOS, by an event-
handler subroutine in the interpreter.

SOS Reference Manual

SOS is always resident in the system and is loaded from the boot disk’s
SOS.KERNEL and SOS.DRIVER files when the system is booted. The
SOS.KERNEL file contains that part of the operating system that must
always be present for the Apple Il to function and which does not change
from machine to machine: file management, memory management, utility
management. Some device management functions, such as translating
file calls into calls to device drivers, are also inthe SOS kernel. The Disk 111
driver is included in the SOS kernel because the Apple Il system always
has a built-in Disk Ili.

The SOS.DRIVER file includes other device management functions.

This file, which is also loaded at boot time, contains the drivers you can
reconfigure or remove. The device drivers provide a way for a specific
device to support the general concept of a file. For example, you can write
a program to send output to the driver .PRINTER . The program contains
no information about individual printers: it merely tells SOS to print so
many bytes on the printer represented by .PRINTER . The driver
.PRINTER translates the SOS calis into the control codes for the specific
printer it is written for. To use a different printer, you need only configure
adifferent .PRINTER driver into the operating system.

You can find more information about the standard device drivers

that control the text and graphics displays, the keyboard, and the
communications ports in the Apple /1l Standard Device Drivers Manual,
information about other drivers is in the manuals for their devices;
information about creating your own device drivers is in the Apple ///
SOS Device Driver Writer's Guide.

1.2.3 Memory

Although the standard addressing space of the 6502 microprocessor is
64K bytes, the Apple Ill machine architecture and SOS provide efficient
access to a maximum of 512K bytes of memory through the use of two
enhanced addressing modes. These modes are described in Chapter 2.

Current hardware supports up to 256K bytes.

The Abstract Machine

Several SOS calls create a memory management and allocation system.
An interpreter can cause SOS to find an unused segment of memory, and
return that segment’s size and location. SOS keeps track of all allocated
segments, so that a program that uses only SOS-allocated segments
cannot accidentally destroy programs or data used by other parts of

the system.

The memory management system also allows an interpreter to acquire
additional memory. This means that an interpreter need not be restricted
to the use of a specific area of memory, so that the interpreter will run
without modification on machines of different memory sizes: the only
difference will be in performance.

SOS acts as a memory bookkeeper, keeping track of memory allocated

to the interpreter, its modules, and the operating system. This bookkeeper
notes whether memory allocation ever violates the rules (that is, whether
the same memory space is ever allocated to two programs at the same
time); but it does not halt a program that breaks the rules, so the
programmer must exercise care. An executing program has access to

all memory within its own module. Any time it requests additional space,

it should release it as soon as it is not needed.

1.24 Files

Files are the principal means of data storage in the Apple lll. A file is simply
a standardized means by which information is organized and accessed
on a peripheral device. All programs and data (even the operating system
itself) are stored in files. All devices are represented as files.

The way a file is used is independent of the way the hardware actually
accesses that file. Files can be either on random-access devices (such as
disk drives) or on sequential-access devices (such as communications
interfaces); files on the Apple 1I's built-in disk drive are accessed in exactly
the same manner as files on a large remote hard-disk drive. SOS lets you
perform simple operations on files (such as read, write, rename) that are
actually complex operations on the devices that store your information.

SOS Reference Manual

SOS uses a hierarchical structure of directories and subdirectories to
expedite file access. As described in the Apple /Il Owner’s Guide, related
files can be grouped together in directories and subdirectories, and
special naming conventions make it easier to specify groups of files.

1.2.5 Devices

The Apple Ill can support a variety of peripheral devices. Some of these
devices are built into the Apple Ill itself; others must be plugged into
peripheral interface connectors inside the Apple IIl.

SOS supports operations on two types of devices: block devices and
character devices. Block devices read and write blocks of 512 bytes in
random-access fashion; character devices read and write single bytes
in sequential-access fashion: both support the concept of a file to which
you read and write single bytes. SOS defines the ways in which you can
control and read the status of both kinds of devices.

1.2.6 The 6502 Instruction Set

The 6502 is the processor in both the Apple Il and the Apple 11I, but in the
Apple Il its power is extended in two ways:

e Additional hardware gives it two enhanced addressing modes,
allowing it to address efficiently far more than 64K bytes
of memory.

e The BRK instruction is used to execute SOS calls. SOS calls can
be thought of as an extension of the 6502 instruction set: that
is, a set of 4-byte 6502 instructions that are emulated in software
by the operating system.

Programs and Memory

Programs and Memory

10 2.1 Addressing Modes

10 2.1.1 Bank-Switched Memory Addressing
13 2.1.2 Enhanced Indirect Addressing

16 2.2 Execution Environments

17 2.2.1 Zero Page and Stack

18 2.2.2 The Interpreter Environment

19 2.2.3 SOS Kernel Environment

20 2.2.4 SOS Device Driver Environment
22 2.2.5 Environment Summary

23 2.3 Segment Address Notation

25 2.3.1 Memory Calls

27 2.4 Memory Access Techniques

27 2.4.1 Subroutine and Module Addressing
29 2.4.2 Data Access

30 2.4.2.1 Bank-Switched Addressing

31 2.4.2.2 Enhanced Indirect Addressing
32 2.4.3 Address Conversion

33 2.4.3.1 Segment to Bank-Switched
33 2.4.3.2 Segment to Extended

34 2.4.3.3 Extended to Bank-Switched
36 2.4.4 Pointer Manipulation

36 2.4.4.1 Incrementing a Pointer

37 2.4.4.2 Comparing Two Pointers

38 2.4.5 Summary of Address Storage

SOS Reference Manual

This chapter describes the methods an interpreter uses to obtain and
manipulate memory. The actual writing and construction of an interpreter
is described in Chapter 7.

2.1 Addressing Modes

Since the 6502's address bus is only 16 bits wide, it can directly address
only 64K bytes. This is not enough memory for many of the applications
the Apple Il is intended for, so the Apple 111/SOS system has been
designed with new addressing techniques to allow you to efficiently
access up to 512K bytes of memory.

The Apple III's memory is subdivided into banks of 32K bytes each. The
architecture of SOS can support up to 16 such banks, or a system with
512K bytes.

The current Apple Ill hardware supports up to eight banks, or
256K bytes.

Certain regions of memory are reserved for use by SOS and its device
drivers; the rest is available for use by an interpreter and its data.

Two methods are used to specify locations in the Apple I1I’s memory:
e bank-switched addressing, which specifies locations with a
bank-plus-address form; and

e enhanced indirect addressing, which specifies locations with
a three-byte pointer form.

2.1.1 Bank-Switched Memory Addressing

The bank-switched method is the standard memory-addressing technique
used to execute interpreter code; it can also be used for data access. In
bank-switched addressing (see Figure 2-1), the 6502's addressing space
is filled by two banks at a time.

Programs and Memory

$0000
$2000
bank bank bank- bank
$0 $1 $2 $E
5A000
$FFFF
AN ¥ /
% N
switchable current switchable banks
bank address
space
key:

: = current bank

Figure 2-1. Bank-Switched Memory Addressing

One bank (called the “SOS bank”, or S-bank) is always present. This
unswitched bank occupies locations $8080 through $1FFF and locations
$AB90 through $FFFF in the standard 6502 addressing space. The larger
region contains SOS. The smaller region contains data areas used by
SOS, as well as the interpreter’s zero page and stack page, described in
section 2.2.1.

Locations $2000 through $9FFF are occupied by one of up to 15
switchable banks, numbered $0 through $E. Normally, the highest bank in
the system (bank $2 for a 128K system, bank $6 for a 256K system, bank
$E for a 512K system) is switched into this space: this bank contains the
interpreter. But the interpreter can cause any of the other banks to be
switched in, either to execute code or to access data. To switch another
bank into the address space (see Figure 2-2), the interpreter changes the
contents of the bank register (memory location $FFEF), as explained in
section 2.4.1. .

12 SOS Reference Manual

$0000
$2000
bank bank bank o bank
30 $1 $2 $E
$A000
$FFFF
N~ N =
switchable banks current switchable banks
address
space
key:

: = current bank

Figure 2-2. Switching in Another Bank

Locations within the S-bank or the currently selected bank may be
specified by a two-byte address, notated here as four hexadecimal digits:

$nnnn $0000 to $1FFF S-Bank Address
$2000 to $9FFF Current-Bank Address
$AD00 to $FFFF S-Bank Address

where each n is a hexadecimal digit. This address uniquely identifies
any location within the current address space.

Locations in bank-switched memory (all banks but the S-bank) are
specified by their four-digit address, plus the number of the bank they
reside in. The addresses of these locations are in the form:

$b:nnnn $0:2000 to $0:9FFF Bank-Switched
$1:2000 to $1:.9FFF Addresses

$E:2000 to SE:9FFF

Programs and Memory

where $b is a hexadecimal digit from $0 to $E, and each nis a
hexadecimal digit.

Addresses in the current bank can be specified with or without
the bank number; that is, in current-bank form or in bank-
switched form. The addresses $E:200@ and $2000 are equivalent
if bank $E is switched in.

Note that bank-switched address specifications such as $@:FFDF and
$2:01FF are not standard: these addresses, being in S-bank space and
unaffected by bank-switching, are normally specified without the bank
number.

Address Specifies

$0:2000 First location in bank @

$2:9FFF Last location in bank 2

$F:32A4 Invalid: there is no bank $F.

$1:B700 Non-standard: use S-bank specification $B70@

Table 2-1. Addresses in Bank-Switched Notation

2.1.2 Enhanced Indirect Addressing

The second memory-addressing method, enhanced indirect addressing,
uses a three-byte extended address to access each memory location.
This method lets a program in one bank access data in other banks.
Enhanced indirect addressing lets any 65@2 instruction that allows
indirect (-X or -Y) addressing to access data within any pair of adjacent
memory banks. (For example, banks $@ and $1, and banks $1 and $2,
constitute bank pairs.) This addressing method is considerably more
efficient than bank-switching, since the bank register need not be altered
in order to access data in other banks.

Enhanced indirect addressing is used for data access only.
Programs cannot execute in the memory space defined by this

method

SOS Reference Manual

An extended address specification consists of a two-byte address and
one extension byte, or X-byte, which has no relation to the 6502’s X
register. The address is in standard 6502 form (low byte followed by
high byte), and may be from $0000 to $FFFF, with some restrictions
explained later. The X-byte is of the form shown in Figure 2-3.

Bit 7 6 5 4 3 2 1 0]
I I T T T

E | unused B

Figure 2-3. X-byte Format

Bit 7 of the X-byte is the enhanced-addressing bit, or E-bit; bits @ through
3 are the bank-pair field, or B field. If the E-bit is @, normal indirect address-
ing takes place, using the S-bank and current bank. If the E-bit is 1,
enhanced indirect addressing (see Figure 2-4) takes place, and the B field
determines which of several bank pairs are mapped into the address space.

i - o
S-bank
bank bank bank $2000
$0 $1 $OE
bank
$6000 i
bank bank VRN $A000
1 2 Al
S-bank
SFFO0
$FFFF $FFFF
X-byte = $80 X-byte = $81 X-byte = $8E X-byte = $8F
Key:

Figure 2-4. Enhanced Indirect Addressing

The X-byte selects one of up to 16 pairs of banks to fill the 64K memory
space, and the two-byte address selects a specific location within the
bank pair. Extended addresses have this form:

Programs and Memory

$8x:nnnn $80:0100 to $80:FFFF Banks® and 1
$81:0100 to $81:FFFF Banks 1and 2

$8m:0100 to $8m:7FFF Bankm
$8F.0000 to $8F.FFFF S-bank and Bank @

where x and each n are hexadecimal digits, and m is the number of the
highest switchable bank.

Extended address notation differs from bank-switched address notation
in the number of digits before the colon. An extended address begins
with a two-digit X-byte, whose first digit is always $8; a bank-switched
address begins with a one-digit bank number.

The X-byte can range from $80 (banks @ and 1) to $8m (bank m), where
m is the number of the highest bank: $2 for a 128K system; $6 for a 256K
system; or $E for a 512K system. The highest bank pair is not really a pair:
it ends at $8m:7FFF, and higher addresses will produce undefined results.
The X-byte has a singular value, $8F, which pairs the S-bank with bank $0@
(see hand paragraph below).

Note that the addresses $8n:0000 to $8n:@0FF are not accessible ‘fz th""la"“? Ary

via enhanced indirect addressing. Any reference to these

addresses will give you a location on the currently selected zero Gcders
page. To address these locations ($8n:0000 to $8n:08FF) you wd
can use the equivalent address in the next-lower bank pair; that ﬁ

is, $8(n-1):8000 to $8(n-1):80FF. (See fourth example below). L |
This trick does not work for the addresses $80:0000 to $80:00FF:

for these addresses, you can use the equivalent addresses E' ’
$8F:2000 to $8F:20FF (see hand, below).

In addition, the addresses $8n:FF@@ through $8n:FFFF should generally
be avoided, as indexing these addresses by the value in the Y-register
may cause a carry and produce an address in the range $8n:0000
through $8n:@@FF—this address is on the zero page. The locations
$8n:FF@@ through $8n:FFFF may be addressed with the equivalent
addresses in the next-higher bank pair: that is, $8(n+1):7F@@ through
$8(n+1):7FFF.

S0OS Reference Manual

The invalid and risky regions are shown in color in Figure 2-4.

Address Specifies

$80:8000 First location in bank $1

$81:7FFF Last location in bank $1

$03:2215 Not an extended address: X-byte ignored
$81:002E Invalid: use $80:802E

$81:FF2E Risky: use $82:7F2E

Table 2-2. Extended Addresses

The X-byte $8F is unique: it causes the S-bank and bank $0 to be
switched into the 6502's address space in their standard bank-
switched arrangement. Bank $8 is mapped to the locations
$8F-2000 to $8F:9FFF, so no part of it conflicts with the zero
page. The X-byte $8F is used primarily by graphics device drivers
to access the graphics area at the bottom of bank $0. (See the
eye paragraph in section 2.4.2.2.)

2.2 Execution Environments

An Apple Ill program’s execution environment defines the state of the
machine while that program is running. The two major programs, S0S
and your interpreter, run in different environments; assembly-language
modules run in an environment much like the interpreter environment;
and device drivers run in part of the SOS environment.

The environment defines the location of the program being executed,

the location and type of memory that program can access, the processor
speed, and the kinds of interrupts the program can handle. (Interrupts are
explained in Chapter 6 and in the Apple /Il SOS Device Driver Writer's
Guide.) The environment also determines whether and how one program
can communicate with another. The environment also specifies which
zero page and stack the executing program will use, as explained in the
next section.

Programs and Memory

2.2.1 Zero Page and Stack

The 6502 microprocessor reserves the first two pages in memory for
special access. The zero page (locations $@000 through $@0FF) is used
by several 6502 addressing modes for indirect addressing and to save
execution time and code space.

But the zero page has only 256 locations, and if both the interpreter and
SOS are trying to save data in that page, it quickly fills up. The Apple Il
resolves this contention by allocating separate zero pages to the
interpreter ($1A@@ through $1AFF) and SOS ($1800 through $18FF).
Thus when an interpreter accesses a zero-page location (by executing
an instruction followed by a one-byte address), it's accessing an area

of memory completely separate from the zero-page storage of SOS.

Similarly, page one (locations $010@ through $91FF) is used as a 256-
byte push-down stack for temporary data storage and subroutine and
interrupt control. Programs that call many nested subroutines and save
many temporary values on the stack can quickly fill it up. Again, the
Apple 11l resolves this contention by allocating separate stacks to the
interpreter ($1B@@ through $1BFF) and to SOS ($0100 through $01FF).

Each zero page and stack is accessible from other environments as a
different page in memory. The SOS kernel, for example, can access
locations in the interpreter’s zero page by using the addresses $1A00
through $1AFF.

@ An interpreter should access only its own zero page and stack.
An interpreter that writes into the SOS zero page or stack will

generally come to an untimely and untidy end.

SOS Reference Manual

2.2.2 The Interpreter Environment

The interpreter is in the highest switchable bank of memory (bank $n):
for a 128K system, this would be bank $2; for a 256K system, bank $6;
for a 512K system, bank $E. Figure 2-5 shows the interpreter placement
in memory.

$0000
_________ $2000

last

$A000
$B800

$FFFF

Figure 2-5. Interpreter Memory Placement

An interpreter shorter than 6K bytes is located entirely in
locations $A@0A through $B7FF of the S-bank. An interpreter

longer than 6K ($180@) bytes begins in the highest bank (the

first byte is between $n:$2000 and $n:$9FFF), and ends in the

S-bank (the last byte is at location $B7FF). For example, an

interpreter that is 10K ($2800) bytes long in a 128K system would

reside from $2:9400 to $B7FF.

Although the maximum size of an interpreter is 38K ($9800) bytes, we
recommend that interpreters be restricted to 32K ($8000) bytes, for
compatibility with future versions of SOS. A longer interpreter can be
split up into a main unit and one or more separately-loaded modules.

Zossi‘(c /}iWW?H/é-w\ & 2oev -4‘8]7/7:

Programs and Memory

An interpreter runs at a nominal 2 MHz clock rate. In practice, execution
speed is approximately 1.4 MHz if the Apple I1I's video display is on;
turning off the video display (using the .CONSOLE driver's CTRL-5
command) raises execution speed to 1.8 MHz. (The remaining 8.2 MHz is
consumed by memory refresh.) An interpreter must be fully interruptable,
so no timing loop in an interpreter will be reliable, except to provide a
guaranteed minimum time.

The interpreter's zero and stack pages, always accessible by normal
zero-page and stack operations, can also be addressed as pages $1A and
$1B. Page $16 is used as the extension page for enhanced indirect
addressing (see section 2.1.2).

Environment Attribute Setting

IRQ Interrupts Enabled

NMI Interrupts Enabled or Disabled
Processor Speed Full speed

Zero Page Page $1A

Stack Page Page $1B

Extend Page Page $16

Bank Highest

Table 2-3. Interpreter Environment

Of the above environment attributes, only the bank registef
(location $FFEF) should be changed by an interpreter

Adherence to this rule is essential for correct system operation.

An assembly-language module operates in the same environment as the
interpreter, except that it may reside in a different bank (see section 7.4).
An assembly-language module must share the interpreter’s zero page
and stack.

2.2.3 SOS Kernel Environment

The SOS kernel (SOS without its device drivers) resides in the upper
regions of S-bank memory, and uses the lower areas of the S-bank for
data and buffer storage (see Figure 2-6).

SOS Reference Manual

$0000
$2000

SOS kernel

% % last
interpreter bank

$A000
$B80O

S0OS kernel

$FFFF

Figure 2-6. SOS Kernel Memory Placement
The SOS kernel uses no bank-switched memory.

SOS uses its own zero page and stack (pages $18 and $91, respectively).
It can be interrupted by both IRQ and NMI interrupts.

Environment Attribute Setting

IRQ Interrupts Enabled
NMI Interrupts Enabled
Processor Speed Full speed
Zero Page Page $18
Stack Page Page $01
Extend Page Page $14
Bank S-bank

Table 2-4. SOS Kernel Environment

2.2.4 SOS Device Driver Environment

Device drivers are placed directly below the interpreter (that is, in memory
locations with smaller addresses), in the highest-numbered bank in the
system (see Figure 2-7). Any drivers that do not fit into that bank are
placed in the next lower bank, beginning at $9FFF and moving down to
lower-numbered addresses.

Programs and Memory

SOSkernel | 30900
driver $2000
. last
s driver
s interpreter bank
‘driver
_________ $A000
$B800
SOS kernel
$FFFF

Figure 2-7. SOS Device Driver Memory Placement
Drivers share the SOS zero page and stack. A driver must reserve space
within itself for all buffers that it uses: it cannot claim any memory outside
itselt.

Environment Attribute Setting

IRQ Interrupts Enabled or Disabled

NMI Interrupts Enabled or Disabled
Processor Speed Full Speed or Fixed 1 MHZ
Zero Page Page $18

Stack Page Page $01

Extend Page Page $14

Bank Interpreter’s or Lower

Table 2-5. SOS Device Driver Environment

A device driver can alter the execution speed; it can disable interrupts for
up to 5@@ microseconds to run timing loops: for more information, see the
Apple 11l SOS Device Driver Writer's Guide.

SOS Reference Manual

2.2.5 Environment Summary

The environment determines what actions a program can perform and
what other programs it can communicate with. The following table
summarizes the capabilities of each environment.

Function Interpreter* Kernel Driver
Can perform a SOS call Yes No No
Can call SOS subroutines No Yes Yes
Can be interrupted Yes Yes Yes**
Can respond to IRQ No Yes Yes
Can respond to NMI No Yes No
Can disable interrupts No Yes Yes
Can detect and queue an event No Yes Yes
Can respond to an event*** Yes No No
Can access interpretermemory Yes Yes Yes
Can access free memory Yes Yes Yes

* An assembly-language module runs in the same environment as its interpreter.

** A device driver can contain a special section, called an interrupt handler, designed
specifically to handle IRQ interrupts.

*** Events, or software interrupts, are defined in Chapter 6.

Table 2-6. Environment Summary

Programs and Memory

2.3 Segment Address Notation

When an interpreter is loaded into memory, it occupies part of the S-bank
and part of the highest-numbered bank. The region below the interpreter
is occupied by the device drivers; the region below the drivers is free
memory, as shown in Figure 2-8.

SOS kernel $0000
free memaory driver $2000
free ; last
¥ RN driver
memory interpreter bank
driver
_________ $AD00
$B8g0
SOS kernel
$FFFF

Figure 2-8. Free Memory

The interpreter has access to its own space. If it needs more memory;, it
can gain access to free memory by using the SOS memory calls. These
calls use segment address notation, to define segments of memory for
allocation (see Figure 2-9). Segment address notation resembles bank-
switched address notation, except that it defines addresses of segments,
not bytes, of memory in either the S-bank or a switchable bank. A page is
a group of 256 contiguous bytes with a common high address byte. A
segment is a set of contiguous pages. The lowest page in a segment is
called the base; the highest page is called the /imit. Each bank of memory
contains 128 pages, numbered $2¢ through $9F.

SOS Reference Manual

$OF:00
$OF:1F

$00:20 $01:20 $02:20
bank bank bank ven bank
$0 $1 $2 $E
$00:9F $01:9F $02:9F
$10:A0
S-bank
$10:FF

Figure 2-9. Segment Address Notation

Each page of memory has a corresponding segment address, which is
very similar to that page’s starting address in bank-switched memory.
The format is:

$bb:pp $00:20 to $00:9F Segment
$01:20 to $01:9F Addresses

$OE:20 to $OE-OF

where bb is the bank number (one byte) and pp is the page number
(one byte) in that bank. Notice that for segment addresses in bank-
switched memory the page part of the segment address is always between

$20 and $9F.

Segment Address Specifies

$01:30 Page beginning at $81:3000
$04:62 Page beginning at $04:6200
$00:9F Page beginning at $0@:9F@0

Table 2-7. Addresses in Segment Notation

A segment address specifies an entire page, not just the first
location in that page. A base segment address and a ljmit

segment address together specify a segment.

Programs and Memory

Segment addresses can also specify pages in S-bank memory: the format
then is slightly different. For segments in the lower part of the S-bank,

the bank part of the segment address is always $@F; for segment addresses
in the upper part of the S-bank, the bank part of the segment address is -
always $10. In either case, the page part (as above) is the same as the
high byte of the memory address.

$bb:pp $0F-00 to $OF:1F Segment
$10:A0 to $10:FF Addresses

Segment Address Specifies

$0F:14 Page beginning at $1400
$0F.02 Page beginning at $@200
$10:B8 Page beginning at $B80@

Table 2-8. Addresses in Segment Notation, S-Bank

Before segment addresses can be used by an interpreter, they must be
converted into bank-switched or extended addresses. These conversions
are explained in section 2.4.3. The SOS memory calls that use segment
addresses are explained below.

2.3.1 Memory Calls

Interpreters use these SOS calls to allocate and release memory.

The name of each call below is followed by its parameters (in boldface).
The input parameters are directly-passed values. The output parameters
are all directly-passed results. The SOS call mechanism is explained

in Chapter 8; the individual calls are described fully in Chapter 11 of
Volume 2.

REQUEST_SEG

[base, limit, seg_id: value; seg_num: result]

This call requests the allocation of the contiguous region of memory
bounded by the base and limit segment addresses. A new segment is
allocated if and only if no other segment currently occupies any part of
the requested region of memory. If a segment is allocated, an entry for
it is made in the segment table.

SOS Reference Manual

FIND__SEG

[search_mode, seg_id, pages: value; pages, base, limit, seg_num: result]

This call searches memory from the highest memory address down, until
the first free space of length pages that meets the search restrictions in
search_mode is found. If such aspace is found, this free space is allocated
to the caller as a segment (as in REQUEST__ SEG): both the segment
number and the location in memory of the segment are returned. If a
segment with the specified size is not found, then the size of the largest
free segment which meets the given criterion will be returned in pages. In
this case, however, error SEGRQDN will be returned, indicating that the
segment was not created.

CHANGE_SEG

[seg_num, change_mode, pages: value; pages: result]

This call changes either the base or limit segment address of the specified
segment by adding or releasing the number of pages specified by the
pages parameter. If the requested boundary change overlaps an adjacent
segment or the end of the memory, then the change request is denied,
error SEGRQDN is returned, and the maximum allowable page count is
returned in the pages parameter.

GET__SEG_ INFO

[seg_num: value; base, limit, pages, seg_id: result]

This call returns the beginning and ending locations, size in pages, and
identification code of the segment specified by seg_num.
GET_SEG__NUM

[seg_address; value; seg_num: result]

This call returns the segment number of the segment, if any, that
contains the segment address.

Programs and Memory

RELEASE_SEG

[seg_num: vailue]

This call releases the memory occupied by segment seg_num by
removing the segment from the segment table. The memory space
formerly occupied by segment seg_num can now be allocated to another
program. If seg_num equals zero, then all non-system segments (those
with segment identification codes greater than $@F) will be released.

2.4 Memory Access Techniques

The Apple lll augments the eleven addressing modes of the 6502 in two
ways: bank-switching and enhanced indirect addressing. Bank-switched
addressing is used for executing code segments residing in bank-
switched memory. Enhanced indirect addressing is used for access to
data in memory. These technigues give your programs efficient access
to all of memory.

In addition, SOS uses segment address notation to allocate free memory
for programs. Segment address notation is reserved for the SOS memory
management calls, which the interpreter uses to obtain and release
memory.

This section discusses the most common modes of access to program
and data storage areas in the Apple Ill. It shows how the memory
addressing methods introduced in section 2.1 and 2.3 are used in
performing various operations, and how these methods can be used

in a program. It also presents sample algorithms that convert the address
of a location from one form to another.

2.4.1 Subroutine and Module Addressing

The 6502's JMP and JSR instructions affect the flow of control within
an interpreter. As the interpreter resides in the S-bank and the highest

" switchable bank, the destination for these instructions is specified in
S-bank or current-bank notation. The JSR and JMP instructions should

SOS Reference Manual

be used in the normal 6502 absolute addressing mode. Here are three
examples of such instructions.

AA40| 4C 3A85 JMP 853A : Jump to location $853A
;in interpreter
8B8p| 20 5022 JSR 2250 ; Jump to subroutine at
; location $2250
23BB| 4C 52B6 JMP 9B652 : Jump to location $B652,
; in the S-bank
All assembly-language listings in this manual were made with
the Apple lll Pascal Assembler. This is the only assembler
supported for the Apple lIl.

If an interpreter wishes to transfer control to a module residing in another
bank, the normal addressing mode will not work: the interpreter must
switch in the proper bank before performing the JMP or JSR.

Bank-switching can be performed only by code residing in

S-bank (that is, unswitched) memory. An interpreter that
performs bank-switching should use a single dispatching ,
routine, located between locations $A@@0 and $B7FF in the
S-bank, for all bank-switching.

The interpreter switches in a given bank by storing the number of the bank
in the bank register (location $FFEF). Once this is done, the JMP or JSR
instruction can be executed normally. Here’s a valid jump:

0000| FFEF BREG .EQU @FFEF ;Define bank register

A@50| A9 @1 LDA #71 : Jump to location $1:326B
AQ52| 8D EFFF STA BREG
Ap55| 4C 6B32 JMP 326B

Here's a jump into oblivion:

0000 FFEF BREG .EQU @FFEF ;Define bank register
8B49| A9@2 LDA #00 ;This program will crash,
8B42| 8D EFFF STA BREG ;asitis not located
8B45| 4C 4440 JMP 4044 ; in the S-bank.

S-bank uces
bank HE and bamb i F

Programs and Memory 29

The module, once switched-in, can use current-bank addresses to

jump around inside itself, and can JMP or RTS back to the part of the
interpreter in S-bank memory, without bank-switching. The interpreter
must, however, switch the highest bank back in before any interpreter
code below S-bank memory can be executed. To do this the interpreter
must save its own bank number before calling the module. The interpreter
can read the contents of the bank register to find the number of its bank,
then call a module and, upon returning, restore the proper bank. The
following subroutine demonstrates how an interpreter would call a
module located at $1:3300.

0000| FFEF BREG .EQU @FFEF ; Define bank register
A700| AD EFFF LDA BREG ; Get the current bank
A703| 48 PHA ; Save it on the stack
A704| A9 1 LDA #@1 ; Switch in

A706| 8D EFFF STA BREG ;. bank $1

A709| 20 0033 JSR 3300 ; Call the module
A70C| 68 PLA ; Upon return, restore
A70D| 8D EFFF STA BREG i the bank number.
A719Q| 60 RTS ; Return to main code.

Only the lower four bits of the bank register contain the current bank
number; the upper four bits should be zero.

2.4.2 DataAccess

An interpreter can access data in three places:

¢ |n the interpreter’s zero page;

¢ |n a table within the interpreter itself;

¢ |n a segment allocated from free memory.
Data can be accessed in locations $0000 through $@@FF, the interpreter’s
zero page, by instructions in absolute, zero-page, or zero-page indexed
mode. For example,
6BA7| A554 LDA 54 ; Value on zero page
747F| 8D E300 STA @QE3 ; Also on zero page

30 SOS Reference Manual

To access data in a table within itself, the interpreter must use the
absolute address of the table (in current-bank or S-bank notation) in
absolute or indexed addressing mode.

7075| CD 9BAB CMP @QAB9B ; Compare location $AB9B
; toaccumulator

585D| BD 5@22 LDA 2250,X ; Load accumulator from
; byte $2250 + X

Data in free memory can be accessed by an interpreter in two ways: by
bank-switching or by enhanced indirect addressing. All data used by an
interpreter must be stored in SOS-allocated segments (see section 11.1 of
Volume 2). To begin storing data in free memory, an interpreter must first
request a segment of free memory from SOS, usinga REQUEST_ SEG or
FIND__SEG call. SOS will return a segment address, which the interpreter
can change into an address more suitable for data access. Conversion
algorithms are described in section 2.4.3.

2.4.2.1 Bank-Switched Addressing

Bank-switching for data access operates just like bank-switching for
module execution (described in section 2.4.1). To perform an operation
on location $b:nnnn, store $b in the bank register and perform the
operation on absolute location $nnnn. For instance,

0000| FFEF BREG. .EQU @OFFEF ; Define bank register

0000 .ORG QA3AA ;Code starts here

A3AA| AD EFFF LDA BREG ; Save current bank register
A3AD| 48 PHA

A3AE| AD 00 LDY #00 ; Perform a loop to

A3B0| 8C EFFF STY BREG ; zero all locations

A3B3| 98 TYA ; from $0:9800 to

A3B4| 990098 LOOP STA 9800,Y ; $0:98FF.

A3B7| C8 INY :

A3B8| D@ FB BNE LOOP :

A3BA| 68 PLA ; Store bank register

A3BB| 8D EFFF STA BREG :

Programs and Memory 31

Just as in module execution, the code to perform bank-switched data
access must reside in the part of the interpreter that is located in S-bank
memory, and you must remember to restore the original contents of the
bank register before returning to the main part of the interpreter.

2.4.2.2 Enhanced Indirect Addressing

Enhanced indirect addressing allows an interpreter to access any location
in bank-switched memory without having to switch in the proper bank
and then switch back. Any 6502 instruction that supports indirect-X or
indirect-Y addressing (ADC, AND, CMP, EOR, LDA, ORA, SBC, STA) can
use enhanced indirect addressing.

To perform a normal {(not enhanced) indirect operation on location

$hilo, you store $/o in a location $nn on zero page, and store $hiinthe _ yemorsbal
following location. You must also store $00 in location $nn+1 of the g b
X-page: the $00 turns off extended addressing. Then you perform the endawesd
operation in an indirect mode on location $nn. The two bytes at $nn ivoe
are a pointer: you can increment, decrement, and test them to move tha;.djw
pointer through your data structure. °‘H’ f*“_

Enhanced indirect addressing merely adds one step to this process. To nemel
perform an enhanced indirect addressing operation, in the interpreter moex
environment, on location $xx:hilo, you store $/o in $nn, $hi in $nn+1, ¥
and $xx in location $76nn+1. Then perform the operation in an indirect E ;
mode on location $nn. The location $76nn+1 is the extension byte, or

X-byte, of the pointer.

Enhanced indirect addressing takes effect whenever you execute an
indirect-mode instruction and bit 7 of the pointer’s extension byte (X-byte)
is 1; that is, whenever the extension byte is between $8@ and $8F. If you
wish to perform normal indirect operations, using bank-switched
addressing rather than enhanced indirect addressing, you should store
your pointer in bank-switched form in the zero page, and set its extension
byte to $8@, which will make sure bit 7 is @. For instance,

32 SOS Reference Manual

61EE| A9 89 LDA #89 : Perform a LDA $82:3289 :

61F@| 8557 STA 57 ; To set up, first put

61F2| A9 32 LDA #32 ; $lohi in zero page

61F4| 85 58 STA 58 : locations $57 and $58; ol .
61F6| A9 82 LDA #82 : then put $xx into /b"'k ~°
61F8| 8D 5816 STA 1658 . location $1658. % @<tend ediv
61FB| A 00 LDY #00 ; Index by 0. &‘ ilepretel
61FD| B157 LDA (57),Y ; Perform the operation.

Once the three bytes are stored, you can manipulate them almost as
easily as a two-byte pointer, and you can use one pointer to access data
in all 15 switchable banks (a total of 480K). This makes it easy to handle
large data structures.

Remember that enhanced indirect addressing is different from
bank-switched addressing. For a description of the two

methods, see section 2.1.

If you are using the enhanced indirect-Y addressing mode and
are using the Y-register to index from an extended address, we
strongly recommend that you avoid using addresses $8n:FFg@

coution ¥ through $8n:FFFF. Adding a Y value to one of these addresses «
r may cause a carry and create an address in the range $8n:3000
through $8n:@@FF, which will access a location on the zero
page. |f you keep your pointer below $8n:FF@® whenever you
are using a non-zero Y register in the enhanced indirect-Y
addressing mode, you will avoid this problem.

2.4.3 Address Conversion

Most interpreters deal mainly with addresses in segment and extended
form: bank-switched addresses are used only when an interpreter must
execute code in a different bank. But bank-switched addresses are a
convenient intermediate form between segment and extended addresses:
they can be readily converted to either of the other forms.

The following algorithms describe the basic conversions between
addresses in segment, bank-switched, and extended forms.

Programs and Memory

2.4.3.1 Segment to Bank-Switched

A segment address specifies a page in bank-switched memory.
When you convert a segment address to a bank-switched
address, the result is the address of the first byte in that page.

To convert a segment address $bb:pp'to a bank-switched address
$B:NNNN,

if (bb=0F) or (bb=10)
then B =0
else B :=bb;

NNNN := pp@0

For example, the following segment and bank-switched
addresses are equivalent.

Segment Bank-Switched

$04:63 = $(4):(6300) = $4:6300
$07:89 = $(7):(8900) = $7:8900
$10:1F = $(0):(1Fd0) = $0:1F00

The bank part, bb, of the segment address is converted to $@ if jt indicates *
the S-bank, or truncated if it indicates any other bank. It then becomes

the bank part of the bank-switched result. The page part, pp, of the
segment address becomes the high part of the bank-switched address,
and the low part is set to $00.

2.4.3.2 Segment to Extended

When converting to extended form, you must be careful to make
sure that the result is in the valid range of extended addresses. You
must also handle the special cases of S-bank segment addresses
and the segment address $00:20.

SOS Reference Manual

To convert a segment address $bb:pp into an extended address
$SXX:NNNN,

if ((bb=$00) {zero bank}
or (bb = $0F) {low S-bank}
or (bb=$10)) {high S-bank}
then
begin
XX = $8F ;
NNNN = pp@0
end
else {general case}
begin
XX = $80+bb-1 ;
NNNN = pp2@+$6000
end;

For example, the following segment and extended addresses are
equivalent:

Segment Extended

$09:2A = $(80+9-1):(2A00+6000) = $88:8A00
$02:94 = $(80+2-1):(9400+6000) = $81:FF@
$OF:1E = $(8F):(1EQD) = $8F:1EQQ

If the segment address specifies a page in S-bank memory, the bb part is
ignored, and the pp part is converted to the address of the beginning of a
page in the S-bank/bank @ pair of the enhanced indirect addressing space.

If the segment address is in bank-switched memory, the bb part is
converted to the xx byte that selects a bank pair with the specified bank
in the top half of the pair. The pp part is then converted to the address of
the beginning of the proper page in that bank pair.

2.4.3.3 Extended to Bank-Switched

When changing an extended address to bank-switched form, you must
handle the special case of an S-bank extended address. You must also

determine whether the extended address points to a location within the
upper or lower bank in its bank pair.

Programs and Memory

To convert an extended address $xx:nnnn to a bank-switched
address $B:NNNN,

if (xx=$8F)then

begin
B =$0 ;
NNNN :=nnnn
end
else
if (nnnn < $8@99) then
begin
B = xx-$80 ;
NNNN = nnnn+$2000
end
else
begin
B =xx-$80+1
NNNN :=nnnn-$6000
end;

For example, the following extended and bank-switched addresses
are equivalent:

Extended Bank-switched

$86:4365 = $(86-80):(4365+2000 = $6:6365
$82:EFB4 = $(82-7F):(EFB4-6000) = $3:8FB4
$8F:2000 = $(50):(2000) = $0:2000

If the extended address refers to a location in the S-bank, the bank part of
the bank-switched address is set to $0 and the address part is used
directly.

If the extended address refers to bank-switched memory, then the xx part
specifies a bank pair. If the address part is less than $8000, the extended
address refers to a location in the lower bank in the pair; otherwise, it
refers to a location in the upper bank. The bank part is set to the bank
number, and the address part is adjusted to the proper location within

the specified bank.

SOS Reference Manual

2.4.4 Pointer Manipulation

Most data structures you use are accessed by three-byte pointers in
extended-address form. The preceding section described how to create
an extended-address pointer from a segment address; this section
describes how to increment and test such a pointer.

These algorithms are designed for ease of explanation, not for efficiency.
They work, but are not intended to be incorporated verbatim into real

applications.

2.4.4.1 Incrementing a Pointer

An increment operation defines successive values of a pointer, and thus
traces a path through successive locations in memory (see Figure 2-10).
This path covers all switchable banks, but omits the S-bank. The path
traced by the algorithm below begins at the first location in bank @,
extended address $8F:2009. It continues through the first page in this
bank, then proceeds to the second page in the same bank with the
extended address $80:0100. This path is chosen to avoid the invalid
address range $80:0000 to $80:00FF.

$0000 0005 T
$0/00
$2000 i §
$2FFF
$7F00 bt
$8000
$AR0D :
SFEFF J] $FEFF
$FFFF $FFFF ¥ $FFFF
X-byte = $8F X-byte = $80 X-byte = $81 X-byte = $8D

Figure 2-10. Increment Path

The path then continues through the last location in bank 1, extended
address $80:FFFF. The path switches to the next bank pair and continues

Programs and Memory

with the first location in bank 2, $81:8000. The path continues in this
manner to the last location in the last bank in memory, at which point
it terminates.

The following algorithm increments an extended address $xx:nnnn.

repeat
nnnn = nnnn +1 {Move to next location. }
if (xx = $8F) and (nnnn > $20FF)
then begin
XX = $80 ; {If beyond location $8F:21¢@, }
nnnn : = nnnn-$2000 {move to location $80:0100 }
end;
if (nnnn>$FEFF) {If near end of a bank pair, }
then begin
nnnn = nnnn-$8000 ; {switch to middle }
XX =EXX+1 {fof next bank pair. }
end;
until xx > $8D; {If no next pair, then stop. }

Notice how this algorithm switches from one bank to the next when
its address part reaches $FF@@. This is to prevent the pointer from
ever taking a value between $8n:FF@@ and $8n:FFFF, which can
cause problems when used in an instruction in the indirect-Y
addressing mode.

24.4.2 Comparing Two Pointers

Two pointers can be considered equal under three conditions. When
you compare two pointers for equality, you must test all three
conditions.

You can reduce the number of tests by comparing the two extension
bytes first, then ordering the two numbers according to their
extension bytes if they are unequal.

The following algorithm compares $xx:nnnn to $XX:NNNN for
equality, assuming that xx <=XX.

SOS Reference Manual

it ((xx=XX) and (nnnn = NNNN))y {1
or ((xx=XX-1) and (XX <> $8F) and (nnnn = NNNN + $8000@)) {2}
or ((xx=$00) and(XX= $8F) and (nnnn=NNNN - $2000))) {3}

thenequal := true
The three conditions are as follows:

{1} The two pointers are expressed identically;
{2} The two pointers are expressed in terms of adjacent bank pairs;

{3} The first pointer is expressed in bank-switched form, and the second
is expressed in extended form.

Note that without the preliminary sorting of the two pointers according
to their extension bytes, two more cases (a total of 8 more byte
comparisons) are necessary to test for equality.

2.4.5 Summary of Address Storage

Addresses in the three forms given above are stored in memory in
these ways:

e S-bank and current bank addresses are stored in normal 6502
style: as two consecutive bytes, low byte followed by high byte.
Heed the warnings on bank-switched addressing given in section
24.1.

e Segment addresses point to pages and are stored as two
consecutive bytes, bank part followed by page part.

e Extended addresses are stored in the zero page and X-page. The
address is stored in the zero page as two consecutive bytes, low
byte followed by high byte. The X-byte is stored in the X-page
(page $0F:16, in the interpreter environment) at the byte position
parallel to the high byte of the address in zero page. An extended
address is referred to by the location of the low byte of the
address part: for instance, the pointer at location $0@50 has its
low part at $0050, high part at $0851, and X-byte at $1651 (in
the interpreter environment).

40
40
40
41
41
43
43
45
46

3.1 Devices and Drivers
3.1.1 Block and Character Devices
3.1.2 Physical Devices and Logical Devices
3.1.3 Device Drivers and Driver Modules
3.1.4 Device Names

3.2 The SOS Device System

3.3 Device Information

3.4 Operations on Devices

3.5 Device Calls

Devices

SOS Reference Manual

3.1 Devices and Drivers

A device is a part of the Apple lll, or a piece of external equipment, that
can transfer information into or out of the Apple IlI. Devices include the
keyboard and screen, disk drives, and printers.

Devices provide the foundation upon which the SOS file system is
constructed. In general, your program will talk to devices only through
the SOS file system.

3.1.1 Block and Character Devices

SOS recognizes two kinds of devices: character devices and block
devices. A character device reads or writes a stream of characters, one
character at a time: it can neither skip characters nor go back to a
previous character. A character device is usually used to get information
to and from the outside world: it can be an input device, an output device,
or an input/output device. The console (screen and keyboard), serial
interface, and printer are all character devices.

A block device reads and writes blocks of 512 characters at a time; it can
access any given block on demand. A block device is usually used to
store and retrieve information: it is always an input/output device. Disk
drives are block devices.

3.1.2 Physical Devices and Logical Devices

A physical device is a physically distinct piece of hardware: if an external
device, it usually has its own box. A Jogical device is what SOS and the
interpreter regard as a device: it has a name. For example, the keyboard
and the screen are separate physical devices; but SOS regards them

as one logical device—the console. On the other hand, if a disk drive
contained two disks, each could be a separate logical device.

Devices

3.1.3 Device Drivers and Driver Modules

Programs called device drivers provide the communication link between
the SOS kernel and input/output devices: they take the streams of
characters coming from SOS and convert them to physical actions of the
device, or convert device actions into streams of characters for SOS to
process. Device drivers for the standard Apple 11l devices are included in
the SOS.DRIVER file: you can change or delete these, or add new ones,
by using the System Configuration Program (SCP) option on the Utilities
disk, as explained in the Apple Il Owner’s Guide and the Apple /1]
Standard Device Drivers Manual.

The Disk Il driver is included in the SOS.KERNEL file. It cannot
be removed or changed by the user, except to specify the number

of drives in the system.

Each logical device connected to the system has its own device driver:
SOS can access the logical device through its driver. Related device
drivers, such as drivers for separate logical devices on one physical
device, can be grouped into a driver module. The drivers in a module can
share code or system resources, such as interrupt lines. A driver module
must be configured into the system as a package: unneeded drivers
cannot be deleted from it. Each driver in the module is named separately.

The SOS kernel and the interpreter only deal with logical devices
and their drivers. Whether the logical device is one physical
device, several physical devices, or part of a physical device, is
academic to the interpreter writer: it is only necessary to know
that all three cases are possible. Similarly, SOS and the interpreter

communicate with a device driver in precisely the same way
whether or not the driver is part of a driver module.

3.1.4 Device Names

A logical device and its driver are both identified by a device name.

If a driver module has several drivers, each has a different device name,
by which it can be separately addressed. The driver module itself has
no name, as it is never addressed as such. (The SCP refers to a module
by the name of the first driver in it.)

SOS Reference Manual

A device name is up to 15 characters long: the first is a period; the second
is a letter; the rest can be either letters or digits, in any combination (see
Figure 3-1).

———-Q—- letter > =

letter

digit

Figure 3-1. Device Name Syntax
Some legal device names are

.D1
.PRINTER
.BLOCKDEVICE

Some illegal device names are

PRINTER (the first character is not a period)
.BLOCK.DEVICE (only the first character can be a period)
.BLOCK DEVICE (a device name cannot contain a space)
.BLOCK/DEVICE (adevice name cannot containa/)

A logical block device also has a volume name, discussed in section
4.1.3.2, which is the name of the medium (for example, a flexible disk) in
the device. In general, the volume name, rather than the device name,
should be used for communicating with the device.

Devices

3.2 The SOS Device System

Since SOS accesses all devices through their drivers, the devices can be
organized as a single-level tree, as illustrated by Figure 3-2):

1)

block block
character device device character
device device

Figure 3-2. The SOS Device System

This system of devices underlies the system of files that will be developed
in the next chapter.

3.3 Device Information

Certain information about a logical device and its driver is stored in

the driver's Device Information Block (DIB), which is broken into the
DIB header and the DIB configuration block. The header contains
information that SOS uses to distinguish between block and character
devices and between devices in each class. It can be read by the
GET__DEV__NUM and D__INFO calls, but cannot be changed. The
configuration block contains data that can be changed by the SCP, such
as the baud rate of a device. The size and contents of the configuration
block differ for each device. Some information in the DIB header can be
used only by SOS; the information that can be read by the interpreter is
described below.

dev_name and dev_num

A device name is up to 15 characters long: the first is a period; the second
is a letter; the rest can be either letters or digits, in any combination. The
device name can be changed only by the SCP.

SOS Reference Manual

Linked with every device name is one and only one device number.
Access to information in the DIB is usually gained via the device
number, which can be obtained from the device name through the
GET__DEV__NUM call. Access to data stored or transmitted by a device
is gained via the device name by accessing a similarly-named file, as
explained in Chapter 4.

slot_num and unit_num

A device can use an interface card plugged into one of the four peripheral
interface connectors (called slots) inside the Apple Ill: such devices have
a slot number, which indicates which of the four slots the card is plugged

into. A device that does not use an interface card has a slot number of zero.

Related device drivers can be grouped into a driver module: each such
driver has a unit number that indicates the placement of that driver, and
its device, in its group. Each driver in a driver module has a separate DIB,
but the drivers may share code. For example, the formatter drivers on the
Utilities disk have separate DIBs but share the same code: they can be
called separately via their unit numbers.

The SOS unit number has nothing to do with the logical unit
number that the Apple Ill Pascal System assigns to devices.

For more information about the internal operation of devices, see the
Apple 111 SOS Device Driver Writer's Guide.

dev_type and sub_type

Apple assigns two identifiers to each device indicating the device'’s
functions. The device type lets you determine whether a given device
is a printer, a communications interface, a storage device, a graphics
device, or whatever; the device subtype distinguishes between devices
of the same type (to separate letter-quality printers from line printers,
for example).

An interpreter that wishes to communicate with a certain type of device,
but does not know the name or number of a device of that type, can
examine these identifiers to find a suitable device.

Devices

manuf_id and version_num

Apple assigns two identifiers to each device and device driver: one to
identify the manufacturer of the device and driver, and one to indicate
their version number. An interpreter can use these identifiers to ensure
compatibility with different versions of the same device.

total_blocks
This field indicates the total number of blocks on a block device.

If you wish a dev_type, sub_type, manuf_id, or version_num to be
assigned to a device and driver, contact the Apple Computer
PCS Division Product Support Department. This will ensure that
the identifiers of each device and driver are unique and are

available to interpreter-writers.

3.4 Operations on Devices

An interpreter can perform these operations on any device:

® Find the device number associated with a given device name,
usinga GET__DEV_NUM call, or find the device name associated
with a given device number, usinga D__INFO call;

¢ Obtain the slot number, unit number, device type, device subtype,
manufacturer’s identification, and version number of a device,
usingaD__INFO call.

An interpreter can perform these operations on a character
device;

® Receive device status information, usinga D__STATUS call;

® Send device control information, usingaD__ CONTROL call.

SOS Reference Manual

Using the System Configuration Program, you can

e Add a new device to the system;

e Remove a device from the system;

e Alter the configuration block of a device;

e Change the name, device type or subtype, or slot number of
adevice.

See the Apple 11l Standard Device Drivers Manual, for information on
device and control requests for specific devices, and the Apple 11l SOS
Device Driver Writer's Guide for a complete specification on the
SOS/driver interface.

3.5 Device Calls

The calls summarized below all operate on devices directly. The name

of each call below is followed by its parameters (shown in boldface).

The input parameters are directly-passed values and pointers to tables.
The output parameters are all directly-passed results. The first list is of
required parameters; the second, present only for D__INFO, is of optional
parameters. The SOS call mechanism is explained in Chapter 8; the
individual calls are described fully in Chapter 12 of Volume 2.

D_ STATUS

[dev_num, status_code: value; status_list: pointer]

This call returns status information about the specified device by passing
a pointer to a status list. The information can be either general or device-
specific information. D__STATUS returns information about the internal
status of the device or its driver; D__INFO returns information about the
external status of the driver and its interface with SOS.

Devices 47

D_ CONTROL

[dev_num, control_code: value, control_list. pointer]

This call sends control information to the specified device by passing a
pointer to a control list. The information can be either general or device-
specific information. D__CONTROL operates on character devices only.

GET__DEV__NUM

[dev_name: pointer; dev_num: result]

This call returns the device number of the driver whose name is specified
by dev_name. The file associated with the device need not be open. The
device number returned is usedinthe D__READ,D__WRITE,D__STATUS,
D__CONTROL, and D__INFO calls.

D_ INFO

[dev_num: value; dev_name, option_list: pointer; length: value]

[slot_num, unit_num, dev_type, sub_type,
total_blocks,manuf_id, version_num: optional result]

This call returns the device name (and optionally, other information)
about the device specified by dev_num. The file associated with the
device need not be open. D__INFO returns information about the device’s
external status and interface to SOS; D__ STATUS returns information
about the internal status of the device and its driver.

48 SOS Reference Manual

50
50
52
53
54
55
56
57
58
59
61
62
62
64
67
68
69

4.1 Character and Block Files
4.1.1 Structure of Character and Block Files
4.1.2 Open and Closed Files
4.1.3 Volumes
4.1.3.1 Volume Switching
4.1.3.2 Volume Names
4.2 The SOS File System
4.2.1 Directory Files and Standard Files
422 File Names
423 Pathnames
4.2.4 The Prefix and Partial Pathnames
4.3 File and Access Path Information
4.3.1 File Information
4.3.2 Access Path Information
4.3.3 Newline Mode Information
4.4 Operations on Files
4.5 File Calls

SOS Reference Manual

4.1 Character and Block Files

A file is a named, ordered collection of bytes, used to store, transmit, or
retrieve information. A file is identified by its name; a byte within the file
is identified by its position in the ordered sequence.

SOS recognizes two types of files: character files and block files. A
character file is treated by SOS as an endless stream of characters, or
bytes. SOS can read or write the current byte but cannot go back to a
previous byte or forward to a later byte. A character file is an abstraction
used to represent a character device. A character file can be read-only,
write-only, or read/write, as determined by the device it resides on. A
character file is identified by its device name, which is defined in the
previous chapter.

A block file is treated by SOS as a finite sequence of bytes, each one
numbered. Any byte, or group of bytes, in a block file can be accessed
by a call to SOS. A block file is so called because it resides in a volume
on a block device: the volume is formatted into 512-byte blocks, also
numbered. The blocks themselves are of concern only to SOS: the
interpreter only reads or writes bytes.

The interpreter need only ask for the particular bytes it wants,
using the file READ and WRITE calls. SOS translates these
byte-oriented calls into block-oriented device requests executed
by the device driver. SOS moves the requested bytes between its
I/0 buffer and the interpreter’s data buffer; the driver moves
whole blocks containing these bytes to and from the 1/0 buffer.
Device requests are described in the Apple /il SOS Device Driver
Writer's Guide.

4.1.1 Structure of Character and Block Files

Character and block files are quite different in implementation, but are
treated similarly. In fact, sequential read and write operations are the
same: an interpreter reads a sequence of bytes from its current position
in a block file in the same way as it reads a sequence of bytes from a
character file.

The bytes in a character file are not numbered and must be accessed
sequentially. Each read or write operation can handle a single byte ora
sequence of up to 64K bytes. The next operation starts where the last
left off. Figure 4-1 shows the structure of a character file.

current byte

|

XL I T TP IN--e

previous j L next

byte byte

Figure 4-1. Character File Model

The bytes in a block file are numbered from $600000 up to $FFFFFE.

A block file can contain up to 16,772,215 bytes (one less than 16
Megabytes). Each read or write operation can handle a single byte

or a sequence of up to 64K bytes. The next operation can start anywhere
in the file, with no reference to the last. For this reason, a block file is a
random-access file. Figure 4-2 shows the structure of a block file.

mark EOF

i L
LIT TN TP PP PPN

9 1 2 -

Figure 4-2. Block File Model

A block file’s size is defined by its end-of-file marker, or EOF, which is
the number of bytes that can be read from the file. The interpreter’s place
in the file is defined by the current position marker, or mark, which is the
number of the next byte that will be read or written.

Both of these may be moved automatically by SOS or manually by
the interpreter.

SOS Reference Manual

4.1.2 Open and Closed Files

A file can be open or closed: an open file can be read from or written to;
a closed file cannot.

Initially, a file is closed: access to a closed file is through its pathname,
defined in section 4.2.3.

When SOS opens a file in response to an OPEN call from an interpreter,
SOS creates an access path to the file by placing an entry into the File
Control Block (FCB), which is a table in memory containing information
about all open files, and returns a reference number (ref_num) to the
program that opened the file. This access path determines the way the file
may be accessed (read from, written to, renamed, or destroyed). Every
time that program accesses that file, it must use that access path and
ref_num. Some files may have more than one access path, as shown in
the Figure 4-3.

Character File

ref_num = ref_num = k
SRR I N
.RS232
Block File
ref_num = m ref_num =n
mark = p mark = g

Figure 4-3. Open Files

The character file above has two access paths, along each of which a
program can read or write at the current byte, or character. The block file
has two access paths, each of which can have a different current position,
or mark, in the file. Each access path can move its own mark, and can
read at the position it indicates. Both access paths share a common end-
of-file marker, or EOF.

In general, a block file can have either (a) one access path open for
reading and writing or (b) one or more read-only access paths: it cannot
have more than one access path if any access path can write to the file. A
character file may have several access paths with write-access.

SOS allows a maximum of 16 block-file access paths and 16
character-file access paths to be open at one time.

Each OPEN call to a file creates a new access path (with its own ref_num)
to that file, which is separate from all the file’s other access paths.

When an access path to afile is closed, its FCB entry is deleted and its
ref_num is released for use by other files.

Certain operations, such as reading and writing, can only be performed on
open files; others, such as renaming, can only be performed on closed
files.

4.1.3 Volumes

A volume is a piece of random-access storage medium formatted to hold
files. A volume is mounted on a block device, and is accessed through
that device. Both flexible disks and hard disks are volumes.

Each logical block device corresponds to one volume at any time. If the
device uses removable media (like flexible disks), it can access different
volumes at different times.

54 SOS Reference Manual

However, a single physical device can correspond to multiple logical
devices, each with its own driver and device name. Each of these logical
devices would have a volume with a different name. For example, if a disk
drive contains a fixed disk and a removable disk, it would normally be
treated as two logical devices, each with its own volume. It would have a
driver module containing two drivers. The two logical devices would have
different names and unit numbers; and the two volumes would have
different names.

It is even possible for a single medium to be divided into multiple volumes:
a disk holding more than 64K blocks might be so divided, as SOS cannot
support volumes larger than 64K blocks. In this case, the physical device
is treated as multiple logical devices: the physical device has a single
driver module, and each logical device has a uniquely named driver and
volume.

On the other hand, a driver for a disk drive containing several fixed disks
might treat the disks as one large volume with one name.

Having noted these special cases, we need not discuss them further. They
are discussed in the Apple /1l SOS Device Driver Writer's Guide, as the
relationships between logical devices and physical devices are
established by device drivers. Since SOS and the interpreter deal only
with volumes and logical devices, we can ignore physical devices without
losing generality. From now on, the word device will mean /ogical device.

Every volume must have two special items, each in a fixed place on the
medium: a volume directory file and a bit map. The volume directory file
contains information about the volume (such as its name and size), and
information about files on the volume. The bit map represents every block
on the volume with a bit indicating whether the block is currently allocated
to afile, or is free for use.

4.1.3.1 Volume Switching

Some devices (such as flexible-disk drives) have removable media. These
devices can access several volumes, though only one at atime. This leads
to problems, however, when a file has been opened on one volume in a

device, and subsequently that volume has been removed and another
substituted for it. If SOS needs to access the open file on the original
volume, it will not be able to find the volume it needs.

When this happens, SOS will request that you restore the volume to its
original drive. It halts all operations of the computer and displays a
message on the screen (see Figure 4-4)

Figure 4-4. The SOS Disk Request

naming the volume it needs and the device into which it should be
placed. The system will wait until you replace the volume and press the
CAPS LOCK (on some keyboards called ALPHA LOCK) key on the
keyboard twice.

The volume-switching capability is very useful when you need to use
many files on various volumes: it allows you to exchange volumes at
will (when the device is idle), and still have all files accessible when they
are needed.

4.1.3.2 Volume Names

A block device is accessible by two names. The first is the device name,
defined in Chapter 3. The second, more useful, name is the volume name.
The volume name of a block device is the name of the volume currently in
the device: the volume name of a flexible-disk drive will change as you
insert and remove flexible disks. A block device containing no volume
(such as an empty flexible disk drive) has no volume name and, to SOS,
does not exist.

56 SOS Reference Manual

A volume name is up to 15 characters long: the first is a letter; the rest
can be letters, digits, or periods, in any combination. A volume name is
always preceded by a slash (/), but the slash is not part of the name.
SOS automatically converts all towercase letters in a volume name

to uppercase. The syntax of a volume name is identical to that of a

file name: a diagram is shown in section 4.2.2.

Here are a few legal volume names, with slashes:

/PROGRAMS
/BLOCK.FILES
/CHAP.2B

Here are some volume names that will not work, and the reasons why:

/BAD NAME (contains a space)
/1.T0.10 (first character is a number)
/STEVE'S.PROGRAM (contains an apostrophe)
/ANTHROPOMORPHOUS (more than 15 characters)

We strongly recommend using the volume name, rather than the
device name, whenever you refer to a block file. This has two
advantages:

® The user is protected against volume-swapping.

e The program is more general: it can be used with new mass-
storage devices without modification.

4.2 The SOS File System

SOS organizes all files it can access into a hierarchical tree structure,
called the SOS file system. The top level of this system is shown in
Figure 4-5.

IR

device ﬂ » device |
character character
file \folume volume file
directory directory

Figure 4-5. Top-Level Files

The top level contains character files and volume directories. Each
character file represents one character device; each volume directory
represents a volume on a block device, and can directly or indirectly
access all files on the volume. Each character file is referred to by its
device name; each volume directory is referred to by its volume
(preferably) or device name.

By comparing this diagram with that of the SOS device system, you can
see that the file system is built on top of the device system: each file
overlays a device.

4.2.1 Directory Files and Standard Files

Since a volume on a block device can contain many files, SOS provides a
special type of file, the directory file, to keep track of them. A directory is a
file listing the names and locations of, as well as other information about,
other files on the volume. The main directory on the volume is the volume
directory, whose name is the same as its volume. The volume directory
lists both standard files, which are block files containing data, and
subdirectory files, which list other files. (A subdirectory file might not list
any files: for example, if you have created a subdirectory file to list a
series of future text files but have not yet created them.) If a directory lists
a file, we may also say that it “owns” that file, or that is the "parent” of
that file.

SOS Reference Manual

Now we can fill in our model of the file system, by adding subdirectories
and the files they list (see Figure 4-6):

o1

device » device
chafacter volume volume character
file directory directory il

file file file file

) sub-
file directory

file file

file

Figure 4-6. The SOS File System

We now have the whole tree: each node is a directory, and each leaf is a
character or block file. We will give them names in a minute.

4.2.2 File Names

Each entry in a directory is listed by its file name, which distinguishes it
from the other entries in that directory. For this reason, each file name in a
directory must be unique. A file name is up to 15 characters long: the first
is a letter; the rest are letters, digits, or periods, in any combination (see
Figure 4-7). SOS automatically converts all lowercase letters in a file name
to uppercase.

letter

letter

digit

()
s

Y,

Figure 4-7. File Name Syntax
Here are a few legal file names:

MIKE.2.JULY.80
SORTPROGRAM
LETTER.TO.SUE

Here are some file names that will not work, and the reasons why:

BAD NAME (contains a space)
1.T70.10 (begins with a number)
STEVE'S.PROGRAM . (contains an apostrophe)
ANTHROPOMORPHOQUS (more than 15 characters)

In earlier editions of the Apple Ill Owner'’s Guide, file names are
called local names.

4.2.3 Pathnames

A pathname is a sequence of names that defines a path from the root of
the file system, through a volume directory and possibly subdirectories,
to a specific file.

A pathname uniquely identifies a file. Even if two files with the same
file name appear in the system, they can be distinguished by their
pathnames.

SOS Reference Manual

volume
name

.| device

1 name] -
file name @—» file name

Figure 4-8. Pathname Syntax

A pathname is composed of names and slashes (see Figure 4-8). A
pathname begins with a slash and a volume name; a device name; or a
file name; more file names may follow. One slash must separate any two
successive names, and the last component of a pathname must be a
name. As always, a volume name is preceded by a slash, and a device
name begins with a period.

Paths always begin at the root of the file system. The first component of
the pathname determines the nature of the path.

/vol_name

dev_name

dev_name

file_name

If the first component is a slash followed by a volume name,
the path proceeds from the volume directory.

If the first component is the name of a block device (which
begins with a period), SOS automatically replaces the
device name with the name of the volume directory of the
volume in that device, and the path proceeds from that
directory.

If the sole component is the name of a character device,
the pathname specifies its character file. No further file
specifications are allowed after a character device name.

If the first component is a file name, SOS appends the
prefix (see below) to the pathname, and the new pathname
is evaluated again.

Here is our file system tree again (see Figure 4-9), this time with the file
names filled in:

T 1]

.CONSOLE PASCAL 1 @ .GRAFIX

[sospriver| | [sos.Driver | @

y

[svsTem.pascaL | [PHoNEs| [ExPensEs]

Figure 4-9. Pathnames

The valid pathnames in this file system are

.CONSOLE /BASICSTUFF
.GRAFIX /BASICSTUFF/SOS.DRIVER
/PASCAL1 /BASICSTUFF/TEMPLATES

/PASCAL1/SOS.DRIVER /BASICSTUFF/TEMPLATES/PHONES
/PASCAL1/SYSTEM.PASCAL /BASICSTUFF/TEMPLATES/EXPENSES

If the volume /PASCAL1 were installed in the device .D1, then every
pathname that included the volume /PASCAL1 would have a synonymous
pathname using .D1 : for example, /PASCAL1/SOS.DRIVER would
specify the same file as .D1/SOS.DRIVER.

4.2.4 The Prefix and Partial Pathnames

The prefix is a pathname that specifies a volume directory or subdirectory
file. When SOS boots, the prefix is set to the volume directory of the boot
volume.

S0OS Reference Manual

A partial pathname is a pathname that begins with a file name, whereas a
full pathname begins with a volume or device name. In other words, a
partial pathname begins with a letter, whereas a full pathname begins with
a slash or period. When SOS receives a partial pathname, it concatenates
the prefix to that pathname with a slash, forming a full pathname. The
effect is to allow you to specify a “current directory”, or prefix, and refer to
files owned by that directory without having to specify the directory’s
pathname each time. For example, the prefix /PASCAL1 and the partial
pathname SOS.DRIVER form the full pathname /PASCAL1/SOS.DRIVER.

The prefix always specifies a volume directory or subdirectory file. The
prefix never specifies a standard or character file.

The SOS prefix is not the Pascal prefix. The two may or may not

have the same value.

4.3 File and Access Path Information

—_—————————

An interpreter often needs information about a file or an access path.
Information about a block file is stored in the file’s directory entry.
Information about a block file access path is stored in its FCB entry. This
section describes file information and access path information for block
files only. Information about a character file is stored as the device
information of its respective character device (see section 3.3). No
corresponding information about an access path to a character file is
available through SOS.

The various items of information about a file will be named in boldface,
and the same names will be used when these items appear as fields in
directories (in Chapter 5) and as parameters for SOS calls (in Chapter 8
and in Volume 2).

4.3.1 File Information

Certain information about a block file, such as a file’s name, belongs to the
file itself rather than to any of its access paths. This information is stored
in that file’s directory entry (see section 5.2.4).

An interpreter can read the file information in the directory entry with a
GET__FILE__INFO call or change it with a SET__FILE__INFO call, both
described in Chapter 10 of Volume 2. No change, however, can be made
to any of the file information if the file is open: a SET__FILE__INFO call to
do so will have no effect until the file is closed.

This information about a file is kept in the directory entry:

file_name

A closed block file is accessed by its file_name. The file name of a block
file can be changed, but only when the file is closed. Only the last file
name in a pathname can be changed, because the preceding names are
the names of open directory files, which are shared with other files.

All access to information about a closed block file is through its
file_name.

access

Every block file has an access attribute field, which determines the ways in
which you may use that file. The access attributes can be set to prevent
you from reading from, writing to, renaming, or destroying a file. It can
also tell you whether a file’s contents have been changed since the last
time a backup copy of the file was made.

EOF and blocks_used

The number of bytes in a block file is specified by the end-of-file pointer,
or EOF. The number of blocks physically used by the file is specified by
the blocks_ used item. In sparse files, which we will see later, the EOF and
blocks_used numbers may not correspond as you might expect.

GET_FILE__INFO returns the current value of EOF and
blocks_used only if the file is closed. If it is open, GET _ EOF
returns the correct value of EOF. GET_FILE _INFO returns the
values EOF and blocks_used had when the file was opened.

SOS Reference Manual

storage_type, file_type, and aux_type

Three items describe the external and internal arrangement of each block
file. The storage_type indicates whether the file is a directory file or a
standard file, and how the file is stored on its block device: this item is
used only by SOS. The file_type classifies the contents of the file; and the
aux_type can be used by an interpreter as an additional description of the
contents of the file: these two items are used only by the interpreter.

A description of the identification codes and their meanings is given later
in this chapter.

creation and last_mod

These items record the dates and times at which a block file was initially
created and last updated. These values are drawn from the system clock
or the last known time.

4.3.2 Access Path Information

Other information about a block file, such as an interpreter’s position in a
file, belongs to the access path rather than the file itself. This information
is stored in the access path’s entry in the File Control Block.

Access path information can be changed only while that access path is
open. When the access path is closed, certain items, such as the mark,
disappear, and others, such as the EOF, update the file information in the
directory entry.

This information about the access path is kept in the FCB entry:

ref_num

When an access path to a file is opened, SOS assigns that access path a
unique reference number, or ref_num. All subsequent references to that
access path must be made with that ref_num.

EOF and mark

Each access path to an open block file has one attribute defining the end
of file, the EQF, and another defining the current position in the file, the
mark. Both of these may be moved automatically by SOS or manually by
the interpreter.

The EOF pointer is the number of bytes in the file. This is equivalent to
pointing one position beyond the last byte in the file, since the first byte is
byte number @: in an empty file (containing zero bytes), EOF points at byte
number @. The value of the mark cannot exceed the value of EOF.

The EOF is peculiar in that it appears both in the file's directory entry and
in the access path’s FCB entry. When a file is open for writing, the two
values of the EOF may differ. The current EOF is stored in the access
path’s FCB entry: this EOF is returned by a GET__EOF call to the ref_num.
The value of EOF in the file’s directory entry is updated only when the
access path is closed: this EOF is returned by a GET__FILE_ INFO call to
the file_name.

It is impossible for two access paths to have different EOF values, for in
order to change the EOF, an access path must have write-access. If it
does have write-access, it must be the only access path to that file.

The mark automatically moves forward one byte for every byte read from
or written to the file. Thus, the mark always indicates where the next byte
will be read or written.

If, during a WRITE operation, the mark meets the EOF, both the mark and
the EOF are moved forward one position for every additional byte written
to the file. Thus, adding bytes to the end of the file automatically moves
the EOF up to accommodate the new information. Figure 4-10 shows the
automatic movement of EOF and mark.

EOF EOF EOF

i
l |)
LI T T T T I I T T TT]
T bt Pl
mark I mark l mark
beginning position after reading 2 bytes after writing 2 bytes

T

Figure 4-10. Automatic Movement of EOF and Mark

An interpreter can manually move the EOF to place it anywhere from the
current mark position to the maximum byte position possible (see Figure
4-11). The mark can also be placed anywhere from the first byte in the file
to the current position of the EOF.

SOS Reference Manual

range of EOF

EOF

;
llll\\]\lTllk\llll]

mark file limit

range of mark

Figure 4-11. Manual Movement of EOF and Mark

The EOF is read by the GET__ EOF call and manually set by the
SET__EOF call; the mark is read by the GET__MARK call and manually
set by the SET__MARK call.

level

Each access path is given a level when it is opened. The level of the
access path is the value of the system file level at the time the access path
was opened. An interpreter can group files by file levels (for example, have
user files open at one level, while system files are open at another), and
perform group operations on files of like levels.

The system file level has the value 1, 2, or 3. When the system is booted,
the level is set to 1. It can be changed by the SET__LEVEL call, and read
by the GET__LEVEL call. One use of the file level is to close all files
opened by a user program when the interpreter exits that program.

This is done as follows: When the interpreter enters the program, it
raises the system file level. Thus all files opened by the program will have
a higher level than, say, . CONSOLE or the interpreter file. When the
interpreter exits the program, it issues a FLUSH call or CLOSE call with a
ref_num of $0@, which closes all files at a level equal to or higher than the
system file level. Then the interpreter lowers the system file level.

4.3.3 Newline Mode Information

Certain information about a file, called newline-mode information, is
associated either with the file itself or with an access path to the file,
depending on the kind of file. A character file's newline-mode information
is associated with the file and its device; a block file’s newline-mode
information is associated with an access path to the file, and can differ
from one access path to another.

When SOS reads from an open file, it can read input as a continuous
stream of characters or as a series of lines. In the first case, you ask SOS
to read a specific number of bytes: when this number have been read or
when the current position has reached the end of file, the READ operation
terminates. In the second case, called newline mode, the READ will also
terminate if a specified character, the newline character, is read. The
newline character is usually the ASCII CR ($0D), but can be any hex value
from $00 to $FF. The newline character is called the termination character
or line-termination character in the Apple 1/l Standard Device Drivers
Manual.

Newline mode is supported on both character and block files, so that file
input/output can be device independent. For example, a program that
reads a line of text from a file can treat the keyboard and a disk file exactly
the same way.

is_newline and newline_char

Newline mode is controlled by two values: is_newline turns newline mode
on or off; newline_char sets the newline character. These two values are
set by the NEWLINE call to the access path’s ref_num.

For a block file, each access path can have separate is_newline

and newline_char values. A character file also has is_newline and
newline_char values, which are also changed by a NEWLINE call
to an access path’s ref_num, but they are the same for all access
paths. If either value is changed for one access path, it is
changed for all.

S0OS Reference Manual

4.4 Operations on Files

These operations can be performed on all files:

e OPEN and CLOSE to control access, and READ and WRITE (if its
access attributes allow) to transfer information from or to the file.

e Change is_newline and newline_char for an access path, using the
NEWLINE call.

These operations can be performed only on block files:

e Examine or change file information, including the name, access,
file type, and modification date, using the GET__FILE__INFO and
SET__FILE__INFO calls.

These operations can be performed only on closed block files:

e CREATE a new file;

e DESTROY an existing file;

These operations can be performed only on standard files open for
writing:

e Set and read the EOF pointer, using the SET__EOF and
GET__EOF calls.

e Set and read the current position mark, using the SET__ MARK
and GET__MARK calls.
These operations can be performed on directory files:
e OPEN and CLOSE thefile.
e READ the file, if it is open.
e DESTROY the file, if it is empty and closed.

4.5 File Calls

These calls deal with files: the calls CREATE through OPEN operate on
closed files; the calls NEWLINE through GET__LEVEL operate on open
files. The name of each call below is followed by its parameters (in
boldface). The input parameters are directly-passed values and pointers
to tables. The output parameters are all directly-passed results. The first
list is of required parameters; the second list, present for some calls, is of
optional parameters. The SOS call mechanism is explained in Chapter 8;
the individual calls are described fully in Volume 2, Chapter 9.

CREATE

[pathname, option_list: pointer; length: value]

[file_type, aux_type, storage_type, EOF: optional value]

This call creates a standard file or subdirectory file on a block device.
A file entry is placed in a directory, and at least one block is allocated.
DESTROY

[pathname: pointer]

This call deletes the file specified by the pathname parameter by marking
the file's directory entry inactive. DESTROY releases all blocks used by
that file back to free space on that volume.

The file can be either a standard or a subdirectory file. A volume directory
cannot be destroyed except by physically reformatting the medium. A
character file can be removed from the system by the System
Configuration Program.

RENAME

[pathname, new_pathname: pointer]

This call changes the name of the file specified by the pathname
parameter to that specified by new_pathname. Only block files may be
renamed; character files are “renamed” by the System Configuration
Program.

SOS Reference Manual

SET_FILE__INFO
[pathname, option_list: pointer; length: value]
[access, file_type, aux_type, last_mod: optional value]

This call modifies information in the directory entry of the file specified by
the pathname parameter. Only block files’ information can be modified;
character files have no such information associated with them.

You may perform a SET__ FILE__INFO on a currently-open file, but the
new information will not take effect until the next time the file is OPENed.
GET_FILE__INFO

[pathname, option_list: pointer; length: value]

[access, file_type, aux_type, storage_type, EOF, blocks,
last_mod: optional result]

This call returns information about the block file specified by the
pathname parameter.

VOLUME
[dev_name, vol_name: pointer; blocks, free_blocks: result]

When given the name of a device, this call returns the volume name of the
volume contained in that device, the number of blocks on that volume,
and the number of currently unallocated blocks on that volume.
SET__PREFIX

[pathname: pointer]

This call sets the operating-system pathname prefix to that specified in
pathname.

GET__PREFIX
[pathname: pointer; length: value]

This call returns the current system pathname prefix.

OPEN
[pathname: pointer; ref_num: result; option_list: pointer; length: value]

[req_access, pages: optional value; io_buffer: optional pointer]

This call opens an access path to the file specified by pathname for
reading or writing or both. SOS creates an entry in the file control block
and an |I/O buffer.

NEWLINE

[ref_num, is_newline, newline_char: value]

This call allows the caller to selectively enable or disable “newline” read
mode. Once newline mode has been enabled, any subsequent read
request will immediately terminate if the newline character is encountered
in the input byte stream.

READ

[ref_num: value; data_buffer: pointer; request_count,
transfer_count: value]

This call attempts to transfer request_count bytes, starting from the
current position (mark), from the file specified by ref_num into the buffer
pointed to by data_buffer. If newline read mode is enabled and the
newline character is encountered before request_count bytes have been
read, then the transfer_count parameter will be less than request_count
and exactly equal to the number of bytes transferred, including the
newline byte.

WRITE

[ref_num: value; data_buffer: pointer; request_count: value]

This call transfers request_count bytes, starting from the current file
position (mark), from the buffer pointed to by data_buffer to the open file
specified by ref_num.

72 SOS Reference Manual

CLOSE
[ref_num: value]

This call closes the file access path specified by ref_num. Its file-control
block is released, and if the file is a block file that has been written to, its
write buffer is emptied. The directory entry for the file, if any, is updated.
Further file operations using that ref_num will fail. If ref_num is $00, all files
at or above the system file level are closed.

FLUSH

[ref_num: value]

This call flushes the file access path specified by ref_num. If the file is a
block file that has been written to, its 1/0 buffer is emptied. The access
path remains open. If ref_num is $0@, all files at or above the system file
level are flushed.

SET__MARK

[ref_num, base, displacement: value]

This call changes the current file position (mark) of the file access path
specified by ref_num. The mark can be changed to a position relative to
the beginning of the file, the end of the file, or the current mark.
GET__MARK

[ref_num: value; mark: result]

This call returns the current file position (mark) of the file access path
specified by ref_num.

SET__EOF

[ref_num, base, displacement: value]

This call moves the end-of-file marker (EOF) of the specified block file to
the indicated position. The EOF can be changed to a position relative to
the beginning of the file, the end of the file, or the current mark.

If the new EOF is less than the current EOF, then empty blocks at the end
of the file are released to the system and their data are lost. The converse
is not true: if the new EOF is greater than the current EOF, then blocks
are not allocated, creating a sparse file; reading from these newly created
positions before they are written to results in $00 bytes.

GET__EOF
[ref_num: value; EOF: result]

This call returns the current end-of-file (EOF) position of the file specified
by ref_num.

SET_LEVEL

[level: value]

This call changes the current value of the system file level. All subsequent
OPENSs will assign this level to the files opened. All subsequent CLOSE
and FLUSH operations on multiple files (using a ref_num of $@0) will
operate on only those files that were opened with a level greater than or
equal to the new level.

GET__LEVEL
[level: result]

This call returns the current value of the system file level. See
SET__LEVEL, OPEN, CLOSE, and FLUSH.

SOS Reference Manual

File Organization on Block Devices

File Organization on Block Devices

77 5.1 Format of Information on a Volume (SOS 1.2)
78 5.2 Format of Directory Files

79 5.2.1 Pointer Fields

79 5.2.2 Volume Directory Headers

82 5.2.3 Subdirectory Headers

85 5.2.4 File Entries

89 5.2.5 Field Formats in Detall

89 5.2.5.1 The storage_type Field

89 5.2.5.2 The creation and last_mod Fields
90 5.2.5.3 The access Attributes

91 5.2.5.4 The file_type Field

91 5.2.6 Reading a Directory File

92 5.3 Storage Formats of Standard Files

92 5.3.1 Growing a Tree File

95 5.3.2 Seedling Files

95 5.3.3 Sapling Files

96 5.3.4 Tree Files

97 5.3.5 Sparse Files

98 5.3.6 Locating a Byte in a Standard File
99 5.4 Chapter Overview

SOS Reference Manual

When a program accesses a block device, it actually accesses the volume
that corresponds to that device. You have already learned of the
hierarchical tree structure used by SOS in its file organization, of the
naming conventions used to access any file within the tree structure, and
of the logical structure of a file as a sequence of bytes; this chapter
explains the physical implementation of these structures on any volume.

The first part of the chapter (section 5.1) discusses what is on a volume,
the second (section 5.2) describes directory files, the third part of the
chapter (section 5.3) discusses standard files, and the final part of the
chapter (section 5.4) provides a graphic summary of the organization of
information on volumes.

The focus of this chapter is on how SOS works, not on how to use it. For
this reason, we have chosen to explain details of implemention that are
not strictly necessary for an interpreter writer to know, in order to make
the working of SOS more concrete. The only section that is of immediate
practical use to an interpreter writer is section 5.2 on the formats of
directory files. The rest of the chapter explains the implementation of the
file system: these sections should be regarded as examples, not as
specifications.

In this manual, we will distinguish the SOS interface, which is supported,
and the SOS implementation, which is not. We will support the
hierarchical tree structure of the file system and the logical structures of
character and block files. We will also support the storage formats of
directory headers and entries, although they may be expanded by
appending new fields. However, we may change volume formats and the
storage formats of standard files.

Programmers should not rely on the details of implementation, as
we may change the storage formats of files in order to improve
performance. An interpreter that uses the READ and WRITE calls
to access files, and interprets directories as we explain here, will
work with future versions of SOS. An interpreter that relies on the

current disk-allocation scheme or index-block structure may not
work with future versions.

File Organization on Block Devices

5.1 Format of Information on
a Volume (SOS_ 1.2)

This section explains how SOS 1.2 organizes information on a 288-block
flexible disk: it should be regarded as an example, not a general
specification for volume formats.

In accessing a volume, SOS requests a logical block from the device
corresponding to that volume. Logical blocks may be supported physically
by tracks and sectors, or cylinders and heads, or other divisions. This
translation is done by the device driver: the physical location of
information on a volume is unimportant to SOS. This chapter discusses
the organization of information on a volume in terms of blocks, numbered
starting with @.

When the volume is formatted, information needed by SOS is placed in
specific logical blocks. A bootstrap loader program is placed in blocks @
and 1 of the volume. This program loads SOS from the volume when
CONTROL-RESET is pressed. Block 2 of the volume is the first block, or
key block, of the volume directory file: it contains descriptions and
locations of all the files in the volume directory, as well as the location of
the volume bit map. The volume directory occupies a number of
consecutive blocks (4 for SOS 1.2), and normally is immediately followed
by the volume bit map, which records whether each block on the volume
is used or unused. The volume bit map occupies consecutive blocks, one
for every 4,096 blocks (or fraction thereof) on the volume. The rest of the
blocks on the disk contain either subdirectory file information, standard
file information, or garbage (such as parts of deleted files). The first
blocks of a volume look something like this (Figure 5-1):

block 2 block n | block n+1 block p
block @ block 1 volume volume volume volume |& Fd
loader loader directory nee directory | bit map e pit map *:5 =
(key block) (last block) | (first block) (first block)

Figure 5-1. Blocks on a Volume

The precise format of the volume directory, volume bit map, subdirectory
files and standard files are explained in the following sections.

SOS Reference Manual

5.2 Format of Directory Files

The format of the information contained in volume directory and
subdirectory files is quite similar. Each directory file is a linked list of one
or more blocks: each block contains pointers to the preceding and
following blocks, a series of entries, and unused bytes at the end. The first
block, called the key block, has no preceding block, so its preceding-block
pointer is zero; the last block has no following block, so its following-block
pointer is zero.

Most entries in a directory describe other files, which can be either
standard files or directories: these entries are called file entries. The first
entry in the key block of a directory contains information about the
directory itself, not about another file: this entry is called the directory
header.

The format of a directory file is represented in Figure 5-2.

Key Block Any Block Last Block
4 0 <[pointer |«— eee «—[pointer
pointer |——| pointer |—»-ese —» 0
header entry XX} entry
entry entry LR entry
one . more /L | more | L more ’|,
block j T entries Z entries o al’ entries 1~
entry entry eoe entry
entry entry seo entry
\ unused unused oo unused

Figure 5-2. Directory File Format

File Organization on Block Devices

The header entry is the same length as all other entries. As will be
described below, the only organizational difference between a volume
directory file and a subdirectory file is in the header.

5.2.1 Pointer Fields

The first four bytes of each block used by a directory file contain pointers
to the preceding and succeeding blocks, respectively, of the directory file.
Each pointer is a two-byte logical block number, low byte first, high byte
second. The key block of a directory file has no preceding block: its first
pointer is zero. Likewise, the last block in a directory file has no successor:
its second pointer is zero. If a directory occupies only one block, both
pointers are zero.

A pointer of value zero causes no ambiguity: no directory block
could occupy block @, as blocks @ and 1 are reserved for the
bootstrap loader.

All block pointers used by SOS have the same format: low byte first, high
byte second.

5.2.2 Volume Directory Headers

Block 2 of a volume is the key block of that volume’s directory file. One
finds the volume directory header at byte position #8004 of the key block,
immediately following the block’s two pointers.

Figure 5-3 illustrates the structure of a volume directory header: following
the figure is a description of each field. If you compare Figure 5-3 with
Figure 5-4, you will notice that the two header types have the same
structure for the first 12 fields, from storage_type to file_count; after that,
the two diverge. However, similarly named fields have different meanings
for the two types, so we have described each type separately.

SOS Reference Manual

Field Byte of
length Block
1byte | storage type | name_length | ¢p4

$05
15 bytes = file_name =
$13
$14
8bytes = reserved =
$1B
$1C
$1D
creation
4 bytes $1E
$1F
1 byte version $20
1 byte min_version $21
1 byte access $22
1 byte entry_length $23
1 byte entries_per_block $24
} $25
2 bytes tile_count
$26
. $27
2 bytes bit_map_pointer
$28
29
2 bytes total_blocks $
$2A

Figure 5-3. The Volume Directory Header

storage_type and name_length (1 byte):

Two four-bit fields are packed into this byte. A value of $F in the high four
bits (the storage_type) identifies the current block as the key block of a
volume directory file. The low four bits contain the length of the volume’s
name (see the file_name field, below). The name_length can be changed
by a RENAME call.

file_name (15 bytes):

The first name_length bytes of this field contain the volume’s name. This
name must conform to the file name (or volume name) syntax explained
in Chapter 4. The name does not begin with the slash that usually

precedes volume names. This field can be changed by the RENAME call.

File Organization on Block Devices 81

reserved (8 bytes):

This field is reserved for future expansion of the file system.

creation (4 bytes):

This field holds the date and time at which this volume was initialized. The
format of these bytes is described in section 5.4.2.2.

version (1 byte):

This is the version number of SOS under which this volume was initialized.
This byte allows newer versions of SOS to determine the format of the
volume, and adjust their directory interpretation to conform to older
volume formats.

For SOS 1.2, version = 0.

min_version (1 byte):

This is the minimum version number of SOS that can access the
information on this volume. This byte allows older versions of SOS to
determine whether they can access newer volumes.

For SOS 1.2, min_version = 0.

access (1 byte):

This field determines whether this volume directory may be read, written,
destroyed, and renamed. The format of this field is described in section
54.23.

entry_length (1 byte):

This is the length in bytes of each entry in this directory. The volume
directory header itself is of this length.

For SOS 1.2, entry_length = $27.

SOS Reference Manual

entries_per_block (1 byte):

This is the number of entries that are stored in each block of the
directory file.

For SOS 1.2, entries_per_block = $0D.

file_count (2 bytes):

This is the number of active file entries in this directory file. An active file
is one whose storage_type and name_length are not 0. See section 5.2.4
for a description of file entries.

bit_map_pointer (2 bytes):

This is the block address of the first block of the volume’s bit map. The bit
map occupies consecutive blocks, one for every 4,096 blocks (or fraction
thereof) on the volume. You can calculate the number of blocks in the bit
map from the total_blocks value, described below.

The bit map has one bit for each block on the volume: a value of 1 means
the block is free; @ means it is in use.

total_blocks (2 bytes):

This is the total number of blocks on the volume.

5.2.3 Subdirectory Headers

The key block of every subdirectory file is pointed to by an entry in
another directory (explained below). A subdirectory header begins at
byte position $0004 of the key block of that subdirectory file, immediately
following the two pointers. Its internal structure is quite similar to that of a
volume directory header. Figure 5-4 illustrates the structure of a
subdirectory header. A description of all the fields in a subdirectory
header follows the figure.

File Organization on Block Devices

Field Byte of

Length Block
1byte | storage type | name_length | $p4
$05

15 bytes = file_name =
$13
$14
8 bytes =~ reserved 5¢

$1B
$1C
4 bytes creation $1D
$1E
$1F
1 byte version $20
1 byte min_version $21
1 byte access $22
1 byte entry_length $23
1 byte entries_per_block $24
; $25
2 bytes file_count $26
2 bytes parent_pointer :;;
1 byte parent_entry_number $29
1 byte parent_entry_length $2A

Figure 5-4. The Subdirectory Header

storage_type and name_length (1 byte):

Two four-bit fields are packed into this byte. A value of $E in the high four
bits (the storage_type) identifies the current block as the key block of a
subdirectory file. The low four bits contain the length of the subdirectory’'s
name (see the file_name field, below). The name_length can be changed
by a RENAME call.

file_name (15 bytes):

The first name-length bytes of this field contain the subdirectory’s name.
This name must conform to the file name syntax explained in Chapter 4.
This field can be changed by the RENAME call.

SOS Reference Manual

reserved (8 bytes):

This field is reserved for future expansion of the file system.

creation (4 bytes):

This is the date and time at which this subdirectory was created. The
format of these bytes is described in section 5.4.2.2.

version (1 byte):

This is the version number of SOS under which this subdirectory was
created. This byte allows newer versions of SOS to determine the format
of the subdirectory, and to adjust their directory interpretations
accordingly.

@ For SOS 1.2, version = 0.

min version (1 byte):

This is the minimum version number of SOS that can access the
information in this subdirectory. This byte allows older versions of SOS to
determine whether they can access newer subdirectories.

For SOS 1.2, min_version = @.

access (1 byte):

This field determines whether this subdirectory may be read, written,
destroyed, and renamed. The format of this field is described in section
5.4.2.3. A subdirectory’s access byte can be changed by the

SET__ FILE__INFO call.

entry_length (1 byte):

This is the length in bytes of each entry in this subdirectory. The
subdirectory header itself is of this length.

For SOS 1.2, entry_length = $27.

File Organization on Block Devices 85

entries_per_block (1 byte):

This is the number of entries that are stored in each block of the directory
file.

For SOS 1.2, entries_per_block = $2D.

file_count (2 bytes):

This is the number of active file entries in this subdirectory file. An active
file is one whose storage_type and name_length are not @. See the next
section for more information about file entries.

parent_pointer (2 bytes):

This is the block address of the directory file block that contains the entry
for this subdirectory. This two byte pointer is stored low byte first, high
byte second.

parent_entry_number (1 byte):

This is the entry number for this subdirectory within the block indicated
by parent_pointer.

parent_entry_length (1 byte):

This is the entry_length for the directory that owns this subdirectory file.
Note that with these last three fields one can calculate the precise position
on a volume of this subdirectory’s file entry.

For SOS 1.2, parent_entry_length =§27.

5.2.4 File Entries

Immediately following the pointers in any block of a directory file are a
number of entries. The first entry in the key block of a directory file is a
header; all other entries are file entries. Each entry has the length specified
by that directory’s entry_length field, and each file entry contains
information that describes, and points to, a single subdirectory file or
standard file.

86 SOS Reference Manual

An entry in a directory file may be active or inactive; that is, it may or may
not describe a file currently in the directory. If it is inactive, the
storage_type and name_length fields are zero.

The maximum number of entries, including the header, in a block of a
directory is recorded in the entries_per_block field of that directory’s
header. The total number of active file entries, not including the header, is
recorded in the file_count field of that directory’s header.

Figure 5-5 describes the format of a file entry.

Field Entry
Length Offset
1 byte storage_type | name_length | ¢pp
$01
i L~
15 bytes = file_name i
$0F
1 byte file_type $19
2 bytes k oint st
e er
Y y_p $12
$13
2 bytes blocks_used
$14
$15
3 bytes EOF
$17
$18
4 bytes creation
$18
1 byte version $1C
1 byte min_version $1D
1byte access $1E
$1F
2 bytes aux_type
$20
$21
4 bytes last_mod
$24
$25
2 bytes header_pointer
$26

Figure 5-5. The File Entry

File Organization on Block Devices 87

storage_type and name_length (1 byte):

Two four-bit fields are packed into this byte. The value in the high-order
four bits (the storage_type) specifies the type of file this entry points to.
The values $1, $2, $3, and $D denote seedling, sapling, tree, and
subdirectory files, respectively. Seedling, sapling, and tree files, the three
forms of a standard file, are described later in this chapter. The low-order
four bits contain the length of the file’s name (see the file_name field,
below). If a file entry is inactive, the storage_type and name_length are
zero. The name_length can be changed by a RENAME call.

file_name (15 bytes):

The first name_length bytes of this field contain the file’s name. This
name must conform to the file name syntax explained in Chapter 4. This
field can be changed by the RENAME call.

file_type (1 byte):

This specifies the internal structure of the file. Section 5.4.2.3 contains a
list of the currently defined values of this byte.

key_pointer (2 bytes):

This is the block address of the key block of the subdirectory or standard
file described by this file entry.

blocks_used (2 bytes):

This is the total number of blocks actually used by the file. For a
subdirectory file, this includes the blocks containing subdirectory
information, but not the blocks in the files pointed to. For a standard file,
this includes both informational blocks (index blocks) and data blocks.
Refer to section 5.3 for more information on standard files.

EOF (3 bytes):

This is a three-byte integer, lowest bytes first, that represents the total
number of bytes readable from the file. Note that in the case of sparse
files, described later in the chapter, EOF may be greater than the number
of bytes actually allocated on the disk.

88 SOS Reference Manual

creation (4 bytes):

This is the date and time at which the file pointed to by this entry was
created. The format of these bytes is described in section 5.4.2.2.

version (1 byte):

This is the version number of SOS under which the file pointed to by this
entry was created. This byte allows newer versions of SOS to determine
the format of the file, and adjust their interpretation processes accordingly.

For SOS 1.2, version = 0.

min_version (1 byte):

This is the minimum version number of SOS that can access the
information in this file. This byte allows older versions of SOS to determine
whether they can access newer files.

For SOS 1.2, min_version = 0.

access (1 byte):

This field determines whether this file can be read, written, destroyed,
and renamed. The format of this field is described in section 5.4.2.3. The
value of this field can be changed by the SET__FILE__INFO call.

aux_type (2 bytes):

This is ageneral-purpose field in which an interpreter can store additional
information about the internal format of a file. For example, BASIC uses
this field to store the record length of its data files. This field can be
changed by the SET__ FILE__INFO call.

last_mod (4 bytes):

This is the date and time that the last CLOSE operation after a WRITE
was performed on this file. The format of these bytes is described in
section 5.4.2.2. This field can be changed by the SET__FILE__INFO call.

File Organization on Block Devices 89

header_pointer (2 bytes):

This field is the block address of the key block of the directory that owns
this file entry. This two byte pointer is stored low byte first, high byte
second.

5.2.5 Field Formats in Detail

Several of the fields above occur in more than one kind of directory entry.
Therefore, we have pulled them out for more detailed explanation here.

5.2.5.1 The storage_type Field

The storage_type, the high-order four bits of the first byte of an entry,
defines the type of header (if the entry is a header) or the type of file
described by the entry.

$0 indicates an inactive file entry
$1 indicates a seedling file entry
(@<=EOF <=512bytes)
$2 indicates a sapling file entry
(512 < EOF <= 128K bytes)
$3 indicates a tree file entry
(128K < EOF < 16M bytes)
$D indicates a subdirectory file entry
$E indicates a subdirectory header
$F indicates a volume directory header

SOS automatically changes a seedling file to a sapling file and a sapling
file to a tree file when the file’s EOF grows into the range for a larger type.
If a file’s EOF shrinks into the range for a smaller type, SOS changes a
tree file to a sapling file and a sapling file to a seedling file.

5.2.5.2 The creation and last_mod Fields

The date and time of the creation, and of the last modification, of each file
and directory are stored as two four-byte values (see Figure 5-6):

SOS Reference Manual

byte 1 byte @
765 432129 IT 6 543219
T T T 171 L 1T b1
year month day
| I I I | . |
1 T T T T I |
/I hour 00 minute
1 I | | I I S B
byte 3 byte 2

Figure 5-6. Date and Time Format

The values for the year, month, day, hour, and minute are stored as
unsigned binary integers, and may be unpacked for analysis. Note that
the SOS calls GET__TIME and SET__TIME represent dates and times
differently.

5.2.5.3 The access Attributes

The access attribute field determines whether the file can be read from,
written to, deleted, or renamed. It also tells whether a backup copy of the
file has been made since the file's last modification (see Figure 5-7).

Write-enable

Read-enable
r

[o]rn] B | RESERVED |W | R |

| L Backup
Rename-enable

Destroy-enable

Figure 5-7. The access Attribute Field

A bit set to 1 indicates that the operation is enabled; a bit cleared to @
indicates that the operation is disabled. The reserved bits are always @.

SOS sets bit 5 (the backup bit) of the access field to 1 whenever the file is
changed (that is, after a CREATE, RENAME, CLOSE after WRITE, or
SET__FILE__INFO operation). This bit is cleared to @ whenever the file is
copied by Backup Ill. This lets Backup Il selectively back up files that
have been changed since the last backup was made.

File Organization on Block Devices 91

Only SOS may change bits 2-4. Only SOS and Backup Il may
change bit 5.

5.2.5.4 The file_type Field

The file_type field within an entry identifies the type of file described by
that entry. This field should be used by interpreters to guarantee file
compatibility from one interpreter to the next. The values of this byte are
defined below:

$00 = Typeless file (BASIC “unknown" file)

$01 = File containing all bad blocks on the volume
$02 = Pascal or assembly-language code file

$03 = Pascal text file

$04 = BASIC text file; Pascal ASCI| file

$05 = Pascal data file

$06 = General binary file

$a7 = Fontfile

$08 = Screen image file

$a9 = Business BASIC program file

$0A = Business BASIC data file

$0B = Word Processor file

$0C = SOS system file (DRIVER, INTERP, KERNEL)
$0D,$0E = SOS reserved

$0F = Directory file (see storage_type)

$10-$BF = SOS reserved
$CO-$FF= ProDOS reserved

5.2.6 Reading a Directory File

Reading a directory file is straightforward, but your program must be
written to allow for possible changes in the entry length and the number of
entries per block: future versions of SOS may change these by adding
more information at the end of an entry. Since these values are in the
directory header, this flexibility is not difficult to achieve.

SOS Reference Manual

The first step in reading a directory file is to open an access path to the
file, and obtain a ref_num. Using the ref_num to identify the file, read the
first 512 bytes of the file into a buffer. The buffer contains two two-byte
pointers, followed by the entries: the first entry is the directory header.
Bytes $1F through $20 in the header (bytes $23 through $24 in the buffer)
contain the values of entry_length and entries_per_block.

Once these values are known, an interpreter can read through the entries
in the buffer, using a pointer to the beginning of the current entry and a
counter indicating the number of entries examined in the current block.
Any entry whose first byte is zero is ignored. When the counter equals
entries_per_block, read the next 512 bytes of the file into the buffer. When
a READ returns a bytes_read parameter of zero, you have processed the
entire directory file.

5.3 Storage Formats of Standard Files

Each active entry in a directory file points (using its key_pointer field) to
the key block of another directory file or to the key block of a standard file.
An entry that points to a standard file contains information about the file:
its name, its size, its type, and so on.

Depending on its size, a standard file can be stored in any of the three
formats explained below: seedling, sapling, and tree. An interpreter can
distinguish between these three (using the file entry’s storage_type field),
but it need not, for an interpreter reads every standard file in exactly the
same way, as a numbered sequence of bytes. Only SOS needs to know
how a file is stored. Nevertheless, we think it is useful for programmers to
understand how SOS stores data on a volume.

The storage formats in this section apply to SOS 1.2. They may
change in future versions of SOS.

5.3.1 Growing a Tree File

As a tree file grows, it goes through three storage formats, as explained in
the following scenario. In the scenario, we start with an empty, formatted
volume, create one file, then increase its size in stages.

File Organization on Block Devices

This scenario is based on the block-allocation scheme used by
SOS 1.2 on a 28@-block flexible disk, which contains four blocks
of volume directory, and one block of volume bit map. This
scheme is subject to change in future versions of SOS.

Larger capacity volumes might have more blocks in the volume bit map,
but the process would be the same.

A formatted, but otherwise empty, 28@-block SOS disk is used like this:

Blocks@-1 : Bootstrap Loader
Blocks2-5 : Volume Directory
Block 6 : Volume Bit Map

Blocks 7-279 : Unused

If you open a new standard file, one data block is immediately allocated
to that file. An entry is placed in the volume directory, and it points to
block 7, the new data block, as the key block for the file. The volume now
looks like this:

Blocks@-1 : Bootstrap Loader Key Block Pointer
Blocks2-5 : Volume Directory
Block 6 : Volume Bit Map o

— Block 7 . DataBlock @ block @

Blocks 8-279 : Unused

This is a seedling file: its key block contains up to 512 bytes of data. If you
write more than 512 bytes of data to the file, the file grows into a sapling
file. As soon as a second block of data becomes necessary, an index
block is allocated, and it becomes the file’s key block: this index block
can point to up to 256 data blocks (two-byte pointers). A second data
block (for the data that won't fit in the first data block) is also allocated.
The volume now looks like this:

SOS Reference Manual

Blocks 9-1 : Bootstrap Loader Key Block Pointer
Blocks2-5 : Volume Directory
Block 6 : Volume Bit Map index
Block 7 . Data Block @ Block?

— Block 8 © Index Block @ g
Block 9 . DataBlock 1 data data
Blocks 10-279: Unused block @ block 1

This sapling file can hold up to 256 data blocks: 128K of data. If the file
becomes any bigger than this, the file grows again, this time into a tree
file. A master index block is-allocated, and it becomes the file’s key block:
the master index block can point to up to 128 index blocks, and each of
these can point to up to 256 data blocks. Index block @ becomes the first
subindex block, which is an index block pointed to by the master index
block. In addition, a new subindex block is allocated, and a new data
block to which it points. Here’s a new picture of the volume:

Key Block Pointer

Blocks 8-1 : Bootstrap Loader
Blocks 2-5 : Volume Directory T
Block 6 : Volume Bit Map index
Block 7 : DataBlock @
Block 8 : Index Block @ ‘/ BN =
Blocks 9-263 : Data Blocks 1-255 e | | s
— Block 264 . Master Index Block
Block 265 . IndexBlock1 .~ L TN
Block 266 : DataBlock 256 data | | data data
Blocks 267-279 : Unused block @ block 255 block 256

As data are written to this file, additional data blocks and index blocks are
allocated as needed, up to a maximum of 129 index blocks (one master
index block and 128 subindex blocks), and 32,768 data blocks, for a
maximum capacity of 16,777,215 bytes of data in a file. If you did the
multiplication, you probably noticed that we lost a byte somewhere. The
last byte of the last block of the largest possible file cannot be used
because EOF cannot exceed 16,777,215. If you are wondering how such a
large file might fit on a small volume such as a floppy disk, refer to the
section on sparse files, later in this chapter.

File Organization on Block Devices 95

This scenario shows the growth of a single file on an otherwise empty
volume. The process is a bit more confusing when several files are
growing (or being deleted) simultaneously. However, the block allocation
scheme is always the same: when a new block is needed, SOS always
allocates the first unused block in the volume bit map.

5.3.2 Seedling Files

A seedling file is a standard file that contains no more than 512 data bytes
($0 <= EOF <= $200). This file is stored as one block on the volume, and
this data block is the file’s key block.

One block is always allocated for a seedling file, even if no data
have been written to the file.

The structure of such a seedling file looks like this (Figure 5-8):

key_ pointer >

data Data Block
$0 < EOF < $200 block 512 bytes long.

Figure 5-8. Structure of a Seedling File

The file is called a seedling file because, if more than 512 data bytes are
written to it, it grows into a sapling file, and thence into a tree file.

The storage_type field of an entry that points to a seedling file has the
value $1.

5.3.3 Sapling Files

A sapling file (see Figure 5-9) is a standard file that contains more than
512 and no more than 128K bytes ($200 < EOF <= $20000). A sapling file
comprises an index block and 1 to 256 data blocks. The index block
contains the block addresses of the data blocks.

SOS Reference Manual

key_polnter > T T T Iindex Block:
[$00°$01° SFEISFF| 056 2-byte

$200 < EOF < $20000 | Index blpck | pointers to data blocks.

e

data data data data

block $08 | | block $@1 block $FE| |block $FF

Figure 5-9. Structure of a Sapling File

The key block of a sapling file is its index block. SOS retrieves data blocks
in the file by first retrieving their addresses in the index block.

The storage_type field of an entry that points to a sapling file has the
value $2.

5.3.4 Tree Files

A tree file (see Figure 5-10) contains more than 128K bytes, and less than
16M bytes ($20000 < EOF < $1000000). A tree file consists of a master
index block, 1 to 128 subindex blocks, and 1 to 32,768 data blocks. The
master index block contains the addresses of the subindex blocks, and
each subindex block contains the addresses of up to 256 data blocks.

key_pointer > s00Ts01T TSTETSTF Master Index Block:

master index block up to 128 2-byte pointers
1 L1 1 to index blocks.

$20000 < EOF < $1000000

sop' $01T TSFE!SFF sopTs1T TSFETSFF
ilndexibto?km? frreesee- iFdexlblorl:k$7ll= m

/ / / /

data ceee data data voos data
block $00 block $FF block $00 block $FF

Figure 5-10. The Structure of a Tree File

File Organization on Block Devices

The key block of a tree file is the master index block. By looking at the
master index block, SOS can find the addresses of all the subindex
blocks; by looking at those blocks, it can find the addresses of all the
data blocks.

The storage_type field of an entry that points to a tree file has the value $3.

5.3.5 Sparse Files

A sparse file is a sapling or tree file in which the number of data bytes that
can be read from the file exceeds the number of bytes physically stored in
the data blocks allocated to the file. SOS implements sparse files by
allocating only those data blocks that have had data written to them, as
well as the index blocks needed to point to them.

For example, we can define a file whose EOF is 16K, that uses only three
blocks on the volume, and that has only four bytes of data written to it.
Create a file with an EOF of $0. SOS allocates only the key block (a data
block) for a seedling file, and fills it with null characters (ASCI! $0@).

Set the EOF and mark to position $8565, and write four bytes. SOS
calculates that position $@565 is byte $0165 ($0564 - $0200 * 2) of the
third block (block $2) of the file. It then allocates an index block, stores
the address of the current data block in position @ of the index block,
allocates another data block, stores the address of that data block in
position 2 of the index block, and stores the data in bytes $8165 through
$0168 of that data block. The EOF is $#569.

Set the EOF to $4000 and close the file. You have a 16K file that takes

up three blocks of space on the volume: two data blocks and an index
block. You can read 16384 bytes of data from the file, but all the bytes
before $8565 and after $0568 are nulls. Figure 5-11 shows how the file
is organized:

SOS Reference Manual

key_pointer
912
Key Block ﬁ
EOF = $4000
block $6 block $1 block $2 block $3 block $1F
Data ‘ 1 CoTTTT i
Blocksl I _____ f l | | B A N
$0 $1FF $400 $5FF $3FFF

bytes $565..$568

Figure 5-11. A Sparse File

Thus SOS allocates volume space only for those blocks in a file that
actually contain data. For tree files, the situation is similar: if none of the
256 data blocks assigned to an index block in a tree file have been
allocated, the index block itself is not allocated.

On the other hand, if you CREATE a file with an EOF of $400@ (making it
16K bytes, or 32 blocks, long), SOS allocates an index block and 32 data
blocks for a sapling file, and fills the data blocks with nulls.

The first data block of a standard file, be it a seedling, sapling, or
tree file, is always allocated.

If you read a sparse file, then write it, the copy will not be sparse:
all the phantom blocks will be written out as blocks full of nulls.
The Apple |1l System Utilities program, on the other hand, can
distinguish between sparse files and non-sparse files and make a
sparse copy of a sparse file. Backup |1l also handles sparse files
correctly, but it should not be used to make copies, because
when it backs up a file, it clears the file's backup bit, so that a
backup of all modified files will overlook the sparse file.

J

5.3.6 Locating a Byte in a Standard File

The mark is a three-byte pointer that is normally used to specify a logical
byte position within a standard file, using the standard model of a block
file. It can also be used to pinpoint the block number and byte number

File Organization on Block Devices

within that block where that byte can be found on a volume. To do so, the
mark is divided into three fields, shown in Figure 5-12:

Bit 23 17 16| 8 | 7 [0}
I [LI [| U LI UL L L
mark index_block data_biock byte
| GRS [L () Y | | Il S R S T T W
Used by Tree only Tree, sapling All three

Figure 5-12. Format of mark

index_block (7 bits):

If the file is a tree file, this field tells which subindex block points to the
data block. If i = index_block, the low byte of the subindex block address
is at byte / of the master index block; the high byte is at byte (i+$100).

data_block (8 bits):

If the file is a tree file or a sapling file, this field tells which data block is
pointed to by the selected index block. If j = data_block, the low byte of the
data block address is at byte j of the index block; the high byte is at byte
(j + $100).

byte (9 bits):

For tree, sapling, and seedling files, this field tells the absolute position of
the byte within the selected data block.

This format for mark applies to SOS 1.2. Future versions of SOS
may use indexing schemes that divide the 24 bits differently. If an
interpreter uses mark as a three-byte pointer to a logical byte
position in a file, it will be unaffected by such changes; if it

meddles with index blocks, it may fail catastrophically, trashing
your disk in the process, under some future version of SOS.

5.4 Chapter Overview

The following figures summarize the information in this chapter.
e Figure 5-13, Disk Organization, shows disk layout and directory
structure.

e Figure 5-14, Header and Entry Fields, explains the individual
fields in the preceding figure.

100 SOS Reference Manual

BLOCKS ON A VOLUME
block 2 block n |bliock n + block p
block @ block 1 volume wolurng wolumi volume | & g
loader loader | directory | ***| diectory | bumap |***| bimap |EE
(kery block) {tast block) | (first block) (first block))

BLOCKS OF A DIRECTORY FILE
VOLUME DIRECTORY OR SUBDIRECTORY

Key Block Any Block Last Block
[] +——[pointer |a— sse =—| ponler Blocks of a direciory:
ponter | —=| ponter |—e=ses —s ° Not necessarily conliguous,
- linked by polnters.
neader aonlry ane eniry
Header describes the
enlry eniry ikl entry direclory file and its
conlenls
one more J more | more L
block entnes =1 anines “ enlnes 4 Entry describes
)] 1 and points to a file
{subgirectory or
standard) in thal
anty aniry wee entry direclory.
entry oty e enlry
unused unused wee unused
HEADER HEADER FILE ENTRY
VOLUME DIRECTORY SUBDIRECTORY SUBDIRECTORY OR
Found in key block Found in key block STANDARD FILE
of volume directory. of subdirectory. Found in any directory file block.
Field Byle of Field Byle of Field Entry
length Block Lengih Block Length Offset
1oyle | worage_type | name_length | $p4 1byle | slorage_type | name length | $4 1byte [slorage_type | name_length | spp
$05 $05 $01
15 bytes 2% fila_nbme 5/ 15 byles .= Iile_name F2 15 bytes ;5 file_name ;;
$13 $13 $0F
814 $14 1byte file_type $10
$1
2 byl ints
yles key_poinier $12
= $13
resarved reserved 2 bytes blocke_used $14
$15
8byles 8bytes 3 bytes EOF
$18 518
$17
$1c $1C $18
$1D $1D
4 bytes creation S1E 4 bytes creation sie Abyies creallon
$1F $1F $1B
Toyte | version | S 1byle version $20 1byle version $1C
1byte min_version $21 1 byte min_version $21 1byle min_version $1D
1byte becots $22 1byle access $22 1byte access S1E
1byte entry_longth $23 1byte eniry_lengih 503 $1F
1byte eniries_per_block $24 1byte entries_per_block 524 2bytes aux_lype 520
25
2 bytes file_count ;6 2byles file_count $25 $21
$27 223 4 bytes lasi_mod
2 byles bit_map_polnier parent_pointer
$28 2 bytes $28 $24
$29 1 byte parent_entry_number §29 $25
lotal_blocks = =
2byles A oA 1byte parent_eniry_langih $2A 2 bytes header_pointer 26

File Organization on Block Devices

SUBDIRECTORY FILE: storage_type = $D

Key Block Any Block Lasl Block
['] pointer -— ses —f peintar
poiniar painter f—— %83 -m [1]
headar entry “en ontry
I
y

2 entries { 1/ entries /f entries
/ 'I :] I

SEEDLING FILE: storage_type = $1
key_pointer Data Block
$0 < EOF < s20p | Dlock Sizpyteslong

SAPLING FILE: storage_type = $2

key_polnier
v-p 00 S01' TSP SFF] m"g‘;’;fm
$200 < EOF < 520000 ndeaiy g pointess 1o data blocks
" /
datn daln N dnta datn
block $00| | block $81 block $FE| |black $FF
TREE FILE: storage_type = $3
key_polnter -1 5007 S01 STE 157F Masler Index Block:
magler index block up to 128 2-byle poinlers
$20000 < EOF < $1006000 10 index blocks

5001501 E!SFF
sasasas index biock $7F
I B

el FE'SFF
ndex block $30

dota |
block $00

data
block $FF

data - data
block S0 block SFF

Figure 5-13. Disk Organization

SOS Reference Manual

byte 1 byte @
765 43210 | 76 5 43210
‘_.,--" T 17 T 171 T 171 T T
- - year month day
creation I I | L1 [
last_mod
(4 bytes) T 1 T T 1 T 1 T 1 1
g, [/ hour 00 minute
T S | | | I | I N Y |
byte 3 byte 2
Write-enable
|._ Read-enable
storage_type access
(4 bits) (bye) | = [o]rn] B | RESERVED [W]R]

$0 = inactive file entry

$1 = seedling file entry

$2 = sapling file entry

$3 = tree file entry

$D = subdirectory file entry
$E = subdirectory header

$F = volume directory header

file_type
(1 byte)

$00 = typeless file

$81 = bad block file

$02 = Pascal or assembly code file
$03 = Pascal text file

$04 = Basic text; Pascal ASCII file
$05 = Pascal data file

$06 = General binary file

$@7 = Fontfile

$08 = Screen image file

$09 = BASIC program file

$0A = BASIC data file

$@B = Word Processor file

$9C = SOS system file (DRIVER, INTERP, KERNEL)

$0D = Reserved

$0E = Reserved

$@F = Directory file

$10-$BF = SOS reserved
$CO-$FF = ProDOS reserved

l L Backup

name_length = length of file_name ($1-$F)

file_name = $1-$F ASCl| characters: first = letters
rest are letters, digits, periods

key_pointer = Block address of file's key block
blocks_used = total blocks for file

EOF = byte number for end of file ($0-$FFFFFF)
version, min_version = § for SOS 1.2
entry_length = $27 for SOS 1.2
entries_per_block = $8D for SOS 1.2

aux_type = defined by interpreter

file_count = total files in directory
bit_map_pointer = block address of bit map
total_blocks = total blocks on volume
parent_pointer = block address containing entry
parent_entry_number = number in that block
parent_entry_length = $27 for SOS 1.2

header_pointer = block address of key block
of entry’s directory.

Figure 5-14. Header and Entry Fields

Rename-enable
Destroy-enable

Events and Resources

Events and Resources &

108 6.1.1 Arming and Disarming Events

108 6.1.2 The Event Queue

109 6.1.3 The Event Fence

110 6.1.4 Event Handlers

112 6.1.5 Summary of Interrupts and Events
112 6.2 Resources

112 6.2.1 The Clock

113 6.2.2 The Analog Inputs

114 6.2.3 TERMINATE

114 6.3 Utility Calls

SOS Reference Manual

6.1 Interrupts and Events

An interrupt is a signal from a peripheral device to the CPU. When the
CPU receives an interrupt, it transfers control to SOS, which saves the
current state of the executing program and calls an interrupt handler,
located in the driver of the interrupting device. After the interrupt is
handled, control is returned to the program that was interrupted.

Interrupts allow device drivers to operate their devices asynchronously.
By using interrupts, a device can operate more efficiently and allow the
interpreter to continue running while a long 1/0 operation is in progress.
For example, when you send a long buffer of text to the .PRINTER driver,
the driver does not process the text all at once; instead, it immediately
returns control to the interpreter, and the interpreter can do something
else while the interrupt-driven .PRINTER driver processes the buffer

for output.

The Apple 111/SOS system fully supports interrupts from any internal or
external peripheral device capable of generating them. To use the system
efficiently, an interpreter must be designed to work properly even if
interrupted. Thus, the interpreter cannot contain any time-dependent
code (such as timing loops), except to provide a guaranteed

minimum time.

Interrupts are discussed in detail in the Apple 1l SOS Device Driver
Writer's Guide.

Interrupts are ranked in priority by the priorities of the devices on which
they occur. Each device has a unique priority, assigned at system
configuration time. In addition, when an interrupt occurs on a device, all
further interrupts from that device are locked out until that interrupt has
been fully processed. For these reasons, SOS never has to deal
simultaneously with two interrupts of equal priority. Conflicts between
interrupts of different priorities are resolved in favor of the higher priority:
a higher-priority interrupt can suspend processing of a lower-priority
interrupt, but not vice versa.

Events and Resources

SOS also supports the detection and handling of events. An event is a
signal from a device driver to an interpreter that something of interest to
the interpreter has happened. When an event of sufficient priority occurs,
SOS suspends the interpreter and saves its state, then calls an event
handler to process the event, then returns control to the portion of the
interpreter that was suspended. By using events, an interpreter can
respond to outside occurrences without spending all its time watching
out for them.

The most common kind of event is triggered by a software response to a
hardware interrupt: a device driver (such as the .CONSOLE driver) defines
a certain occurrence (such as a press of the space bar) as an event, and
allows interpreters or assembly-language modules to respond to that
event. In principle, however, events need not be triggered by interrupts: an
event can signal, for example, an overflow on a communication card, a
“message received” condition on a network interface, or a “new volume
mounted” condition on a mass-storage device. Any occurrence or
condition a driver can detect can be signaled as an event.

SOS currently supports two events, both detected by the
.CONSOLE driver: the Any-Key Event and the Attention
Event. Both of these are produced by interrupts from the
keyboard. These events are described in the Apple /!l Standard
Device Drivers Manual. Additional events may be defined

by a device driver: for details, see the Apple /1l SOS Device Driver
Writer's Guide.

The most common event sequence is illustrated below. An event is
armed when the interpreter prepares a device driver to signal a certain
occurrence (in this case, a keypress) as an event. The interpreter supplies
the address of a subroutine to be called when the expected event occurs.

When the device driver detects the event (in this case, by means of an
interrupt), the driver places the event into a queue and returns to the
interrupted process, whether interpreter or SOS. This is illustrated by
Figure 6-1.

SOS Reference Manual

interpreter event SOS driver interrupt
handler handler
detect
interrupt
queue
event
case AorB
/

Figure 6-1. Queuing An Event

Any time SOS is ready to return control to the interpreter, such as after
executing a call or processing an interrupt, it checks the event queue. If
it finds an event of a priority above the preset event fence (see Figure 6-2),
SOS calls an event-handler subroutine within the interpreter. When the
event has been processed, SOS returns control to the main body of the

interpreter.
case A: priority >fence
interpreter event SOS driver interrupt
handler handler

process
event
return to
interrupted code l

Figure 6-2. Handling An Event: Case A

Events and Resources

If SOS finds no event above the fence (see Figure 6-3), the event remains
queued until the fence is set (by a SET__ FENCE call) below the event's
priority. Then, the event will be processed as soon as the call is
completed.

case B: priority <fence

interpreter event SOSs driver interrupt
handler handler

return to
interrupted code

event remains
queued, but
is not
processed

SOS call : setfence < priority

process
event

return to code 1
following SOS call

Figure 6-3. Handling An Event: Case B

An event need not be triggered by an interrupt: it can occur
as a result of any operation within a device driver. But events are
detected only by device drivers, and are handled only by an

event-handler subroutine within an interpreter. An event handler
will be called only after a SOS call or an interrupt is processed.

SOS Reference Manual

6.1.1 Arming and Disarming Events

SOS has not defined a uniform mechanism for arming and disarming
events: this is left up to the device driver that supports the event. The two
existing events are armed and disarmed by D__ CONTROL calls to the
.CONSOLE driver.

An interpreter arms an event by passing three items to the device driver:
the address of the event handler, a one-byte event identifier (ID), and a
one-byte event priority. The event ID indicates the nature of the event, and
allows the event handler to distinguish different events. For example, the
event ID for the Any-Key Event is 1; the event ID for the Attention Event is
2. The event priority indicates the importance of the event, and determines
when, or whether, the event will be processed.

An interpreter disarms an event by arming it with a priority of zero: this
ensures that it will be ignored.

6.1.2 The Event Queue

More than one event can be armed at once, and more than one event can
occur during a driver’s operation. SOS has a priority-queue scheme for
keeping simultaneous events in order.

When a driver detects an event, it assigns an ID, a priority, and an event-
handler address to the event. (These are the values the interpreter passed
to the driver when the event was armed.) The ID, priority, and address are
placed in an event queue (see Figure 6-4) maintained by SOS.

Events and Resources 109

$FF $20 $1F $1F } Priority
} Identifier
Address

B First Second Third Last

Figure 6-4. The Event Queue

The queue is arranged in order by priority: an event of higher priority will
be handied first. The highest priority is $FF: this priority guarantees that
an event will be handled before any other event. Events of equal priority
are queued first-in, first-out (FIFO): an event with the same priority as
another event already in the queue is placed after the other event. Events
of priority $8@ can never be handled, so they are not queued.

6.1.3 The Event Fence

The priority ordering of the event queue determines not only when an
event will be handled, but also whether it will be handled at all. SOS
maintains an event fence (see Figure 6-5) that determines which events
will be processed and which will not.

The fence is a value from $0@ to $FF that is compared to the priority value
of each event in the queue. Only those events whose priority is greater
than the fence will be handled: setting the fence to $FF ensures that no
events will be handled.

110 SOS Reference Manual

$FF $20 $1F $0OF $09

First Second Third Not Processed

fence = $10
Figure 6-5. The Event Fence

All events above the fence are handled, in order, and removed from the
queue before SOS returns control to the suspended portion of the
interpreter. Events below the fence remain in the queue, and may be
handled when the fence is lowered.

Two SOScalls, SET__ FENCE and GET__FENCE, allow an interpreter to set
and read the value of the fence. If the interpreter lowers the fence while
events are in the queue, previously queued events whose priority values
are greater than or equal to the new value of the fence will be handled
immediately after the call is completed.

6.1.4 Event Handlers

An event handler is a subroutine in the interpreter that is called by SOS in
response to an event, under certain conditions. An event can only be
processed when the interpreter is executing. If a SOS call is being
executed when an event occurs, the event is queued; after the call is
executed, SOS will call the interpreter’s event handler if the event's priority
is higher than the event fence. When the event handler is called, the
previous state of the machine is stored on the interpreter’s stack, and the
event ID byte is stored in the accumulator; then the event is deleted from
the queue.

Events and Resources

Among the items saved on the stack is the current value of the event
fence. The fence is then raised to the level of the current event until the
event has been processed: this ensures that no event of lower priority will
preempt the current event, now that the current event is no longer in the
queue. Figure 6-6 illustrates the system status during event handling.

A event_Id
X
Y
W

s+0
S s s+1 fence

s+2 SOS

return

P s+3 address PHA

s+4 PLA

Figure 6-6. System Status during Event Handling

The event handler uses the event ID to determine the reason it was called
and to take appropriate action.

When the event handler is finished, it returns control to SOS via an RTS;
SOS then restores the system to its previous state, and returns control to
the suspended portion of the interpreter. Since the previous state included
the event fence, any fence set by the event handler will be lost, unless that
fence value is passed to the body of the interpreter and reestablished

by it.

112 SOS Reference Manual

6.1.5 Summary of Interrupts and Events
® Interrupts are generated by hardware; events are generated by
software.

® Interrupts are ranked by the priorities assigned to the devices
they occur on; events are ranked by the priorities assigned to
them by the drivers that detect them.

o Interrupts are stacked; events are queued.

¢ Interrupts are handled by an interrupt handler in a device driver;
events are detected and queued by a device driver, and
processed by an event handler in the interpreter.

® Interrupts can preempt the interpreter or SOS; events can only
preempt the interpreter.

e Interrupts cannot be disabled by the interpreter; events can be
disabled by setting the event fence to $FF.

6.2 Resources

The Apple Il has two resources accessible by special SOS calls: the
system clock and the analog ports.

6.2.1 The Clock

The Apple Il system clock runs continuously: when the computer is
turned off, the clock runs on batteries. It keeps time down to the
millisecond, and can be read and set by SOS.

The clock is set and read by two calls: SET__TIME and GET__TIME. To set
the time, the calling program writes it as an ASCII string into an 18-byte
buffer in memory, then passes SOS the address of the buffer: SOS then
sets the clock to the specified time. To read the time, the calling program
passes SOS the address of an 18-byte buffer: SOS then writes the current
time into this buffer.

Events and Resources

If the computer has no functioning clock, SOS responds to a SET__TIME
call by saving the time it receives. SOS returns this time unchanged upon
a subsequent GET__TIME call.

Both calls express the time as an 18-byte ASCI| string of the following
format:
YYYYMMDDWHHNNSSUUU

The meaning of each field is as below:

Field Meaning Minimum Maximum
YYYY: Year 1900 1999
MM: Month 00 12 December
DD: Date 00 or 91 28, 30, or 31
W: Day @1 Sunday @7 Saturday
HH: Hour @0 Midnight 23 11:00 p.m.
NN: Minute 00 59
SS: Second 0] 59
UUU: Millisecond 000 999

Forexample, Monday, December 29, 1980, at 9:30 a.m. would be specified
by the string “198012290093000000".

On input, SOS replaces the first two digits of the year with “19” and
ignores the day of the week and the millisecond. SOS calculates the day
from the year, month, and date.

SOS does not check the validity of the input data. The clock rejects any
invalid combination of month and date. February 29 is always rejected.

The clock does not roll over the year.

6.2.2 The Analog Inputs

The GET__ ANALOG call reads the analog and digital inputs from an
Apple [l Joystick connected to port A or B on the back of the Apple Il1. It
can also read compatible signals from other devices.

SOS Reference Manual

6.2.3 TERMINATE

The TERMINATE call provides a clean exit from an interpreter.

it clears memory, clears the screen, and displays the message INSERT
SYSTEM DISKETTE AND REBOOT on the screen. The TERMINATE call
is useful as part of a protection scheme that locks out the NMI. Such a
scheme allows only one way of leaving the program, and erases it
completely afterward.

Before using this call, an interpreter must close all open files. This
will ensure that no half-written buffers are left in limbo.

6.3 Utility Calls

These calls deal with the system clock/calendar, the event fence, the
analog input ports, and other general system resources. The name of
each call below is followed by its parameters (in boldface). The input
parameters are directly-passed values and pointers to tables. The output
parameters are all directly-passed results. The SOS call mechanism is
explained in Chapter 8; the individual calls are described fully in Chapters
9 through 12 of Volume 2.

SET__FENCE

fence: value

This call changes the current value of the user event fence to the value
specified in the fence parameter. Events with priority less than or equal to
the fence will not be serviced until the fence is lowered.

GET_FENCE

fence: result

This call returns the current value of the user event fence.

Events and Resources 115

SET_ TIME

time: pointer

This call sets the current date and time. SET__ TIME attempts to set the
hardware clock whether itis operational or not. It also stores the new time
in system RAM as the last known valid time: this time will be returned by
all subsequent GET__TIME calls if the hardware clock is absent or
malfunctioning.

GET_TIME

time: pointer

This call returns the current date and time from the system clock. If the
clock is not operating, it returns the last known valid date and time from
system RAM. If the system knows no last valid time, GET_TIME returns a
string of 18 ASCII zeros.

GET__ANALOG

joy_mode: value; joy_status: result

This call reads the analog and digital inputs from an Apple Il Joystick
connected to port A or B on the back of the Apple Ill.

TERMINATE

This call zeros out memory, clears the screen, displays INSERT SYSTEM
DISKETTE & REBOOT in 40-column black-and-white text mode on the
screen, and hangs, until the user presses CONTROL-RESET to reboot the
system. This call uses no parameters.

116 SOS Reference Manual

Interpreters and Modules

Interpreters and Modules

118
119
121
125
125
131
143
143
144
145
146

7.1 Interpreters
7.1.1 Structure of an Interpreter
7.1.2 Obtaining Free Memory
7.1.3 Event Arming and Response
7.2 A Sample Interpreter
7.2.1 Complete Sample Listing
7.3 Creating Interpreter Files
7.4 Assembly-Language Modules
7.4.1 Using Your Own Modules
7.4.2 BASIC and Pascal Modules
7.4.3 Creating Modules

118 SOS Reference Manual

This chapter describes the two kinds of assembly-language programs that
you can use: interpreters and modules. It discusses their structures,
operating environments, and special characteristics; it explains how to
create them and how to get them successfully loaded into the system.

7.1 Interpreters

The interpreter is the assembly-language program that SOS loads into
memory from the file SOS.INTERP and executes at boot time. The
interpreter can be a stand-alone interpreter, like Apple Writer Hl1, or it can
be a /language interpreter, like the BASIC and Pascal interpreters. A
stand-alone interpreter, normally an application program, provides the
interface between you and SOS. A language interpreter can either provide
this interface directly, as does BASIC, or support a program that does, as
does Pascal, or both. A language interpreter can load and run your
program in response to your command, or it can load and run a greeting
program at boot time.

The interpreter is stored in its entirety in the file SOS.INTERP in the
volume directory of the boot diskette. Additional functions can be added
to the interpreter by use of assembly-language modules (see section 7.4).

An interpreter can
¢ Make SOS calls;
e Store and retrieve information in memory; and

e Handle events.

The SOS calls made by an interpreter can interact with you through
devices, store or retrieve data, or request memory segments in which to
store data. The memory accesses made by an interpreter can manipulate
any information in the memory segments owned by the interpreter. The
events handled by the interpreter can let it respond to special
circumstances detected by device drivers.

Interpreters and Modules 119

7.1.1 Structure of an Interpreter

An interpreter is stored in a file named SOS.INTERP in the volume
directory of a boot diskette. The data in this file consists of two parts:
a header and a part containing code—as shown in Figure 7-1.

{ ™
8 bytes label 2
y
2 bytes opt_header_length = m
header
2 L’ > part
mbytes opt_header /

2 bytes loading_address

2 bytes code_length = n

n bytes '[code part

Figure 7-1. Structure of an Interpreter

NN
b

120 SOS Reference Manual

The header consists of five fields, described below:
label (8 bytes):
This field contains eight characters

SOS NTRP

including the space. This is a label that identifies this file as an interpreter.
The letters are all uppercase ASCII with their high bits cleared.
opt_header_length (2 bytes):

The next field contains the length of an optional header information
block: if no optional header block is supplied, these bytes should
be set to $0080@. The length does not include the two bytes of the
opt_header_length field itself.

opt_header (opt_header_length bytes):

If the previous field is nonzero, the optional header block comes here.

loading_address (2 bytes):

This field is the loading address (in current-bank notation) of the code
part that must go into the highest bank of the system.

code_length (2 bytes):

This field is the length in bytes of the code part, excluding the header.
For example, an interpreter that begins at location $925@ in the highest

bank of the system, is $25AF bytes long, and has no optional header
would have a header part like this:

ASCIl "SOS NTRP” ; label for SOS.INTERP
WORD 0000 ; opt_header_length = @
WORD 9250 ; loading_address
WORD 25AF ; code_length

Interpreters are always absolute code, and must start at a fixed
location. A program in relocatable format cannot be used as an

interpreter.

Interpreters and Modules 121

The header is immediately followed by the code part of the interpreter.
During a system bootstrap operation, the code part is placed at the
address given in the header, so that the first byte of code resides in the
location specified by loading_address (location $2:9250 for the above
example, in a 128K system). When loading is completed, execution

of the interpreter begins at this location: the header part is discarded.

SOS requires only that the first byte of the code part be executable
interpreter code; the rest of the code part of the interpreter may
be in any format.

7.1.2 Obtaining Free Memory

An interpreter can use any and all memory that is not already allocated
to SOS or device drivers, but first it must request this memory from SOS.
The REQUEST_ SEG and FIND__SEG calls to SOS can be used by an
interpreter to request an area of memory in which to store data.

By allocating a segment of memory for its exclusive use, the interpreter
ensures that no other code—the SOS file system, a device driver, an
invocable module—will use that segment for another purpose. SOS
allocates by an honor system: it protects allocated memory from conflict,
but cannot prevent the use of unallocated memory. You can avoid
memory conflict entirely by always allocating memory before use and
deallocating it after use.

@ Using unallocated memory can have dramatic results. When an

interpreter overwrites a file's I/0 buffer, the system crashes. It
does so to avoid trashing a disk: since the buffer contains block-
allocation information as well as the interpreter’s data, SOS would
compromise the entire disk if it wrote out a buffer altered by the
interpreter. To avoid this, SOS comes down with a SYSTEM
FAILURE 16 message. When this happens, the data in the /0
buffer, as well as the data in memory, are lost.

The piece of interpreter code given below uses the FIND__SEG call
(described in Chapter 12 of Volume 2) and the segment-to-extended
address conversion described in section 2.2.3.1. It requests a 1K segment
of memory (consisting of four adjacent memory pages) and fills that
segment with zeros.

SOS Reference Manual

The first part of this procedure is the call to SOS to find a segment of the
appropriate size. This is done with a FIND__SEG call.

FINDSEG EQU 41

FINDIT BRK ;i Perform the SOS call
.BYTE FINDSEG FIND_SEG
WORD FSPARAMS with the required parameters here.
BEQ CONVERT IF successful, THEN process addresses.

LDA PAGES . ELSE see how big it can be.
BNE FINDIT . IF any free memory exists, THEN ask again.
JMP ERRORHALT ; ELSE stop execution.
FSPARAMS
.BYTE @6 ; Six parameters for FIND__SEG:
SRCHMOD .BYTE 00 : Seg must be in one bank
SEGID BYTE 11 i I'llcallitseg. 11.
PAGES WORD 04 ; Ask for 1K of memory
BASE WORD 0000 ; "base” result parameter
LIMIT WORD 0000 : "limit” result parameter
SEGNUM .BYTE 00 i "seg_num" result parameter
EXTLIMIT ; Place to store (extended form of)

WORD 09 limit bank and page.

Oncethe FIND__SEG call succeeds, the values at BASE and LIMIT contain
addresses in segment-address form of the first and last pages in the
segment. Now the base and limit addresses must be converted into
extended form to be used in clearing the memory in that segment. The
first part of this process is determining where the segment is located: in
the S-bank, in bank @, or in another bank in bank-switched memory.

CONVERT LDA BASE i Get bank number of segment
BEQ SZBANK ; Isitin bank @?
CMP #OF ; Isitin low S-bank?
BEQ SZBANK
CMP #10 ; Isitin high S-bank?
BEQ SZBANK

For the general case (any bank but S or @), the conversion involves
calculating the proper X-byte and creating the two-byte address
for the pointer.

Interpreters and Modules 123

ANYBANK CLC ; Turn bank number into X-byte
ADC #7F i XX =$80 +bb-1
STA 1651 ; Store it in X-page for pointer.
LDA BASE + 1 ; Get page number in bank
CLC ; Turn into high part of address
ADC #60 ; NNNN := ppg0 + $6000
STA 51 ; Store into zero-page pointer
LDA #00 ; Create low part of $00
STA 50 : Store into zero-page pointer
LDA LIMIT ; Get bank number of segment.
CLC ; Turn into X-byte.
ADC #7F ; XX =$80 +bb -1
STA EXTLIMIT ; Store it in X-page for pointer.
LDA LIMIT + 1 : Get page number of limit.
CLC ; Turn into extended form for
ADC #60 ; later comparison with page
STA EXTLIMIT +1 i being zeroed,
JMP CLEARIT ; and proceed to clear the segment.

For the case where the segment resides in bank @ or the S-bank, the
conversion is much easier: just use an X-byte of $8F and create the proper
two-byte address.

SZBANK LDA #8F : Use an X-byte of $8F
STA 1651
LDA BASE + 1 . Get page number in bank
STA 51
LDA #00 ; Create low part of $20
STA 50
LDA #8F ; Use limit X-byte of $8F
STA EXTLIMIT
LDA LIMIT + 1 ; Convert page number of limit
STA EXTLIMIT + 1 ; toextended form.

Now an extended pointer has been created and is stored in locations
$0050, $0051, and $1651. This pointer indicates the beginning of the
memory range allocated by SOS in the FIND_ SEG call.

A process similar to the above can be used to convert the limit segment
address into another extended pointer to define the end of the segment.

Remember that the limit address specifies the last page in the
segment. Converting the limit address into a pointer using the
method shown above will give you a pointer to the beginning of

this page, not the end. Keep this in mind when comparing two
pointers derived from base and limit segment addresses.

124 SOS Reference Manual

Once the pointers are set up, a simpler form of the increment loop
described in section 2.4.2.1 can be used to scan through every location
in the segment and, in this example, set each byte to $80. Because the
FIND__SEG call requested that the entire segment reside in one bank,
the increment loop does not need to increment the X-byte of the pointer,
or compare the base X-byte to the limit X-byte.

LDY
STORE LDA
STA
INY
BNE
INC
LDA
CMP
BCC
BEQ

#00
#00
(50).Y

STORE

51

51

EXTLIMIT + 1
STORE
STORE

; Use Y as an index in each page.
; Value to put in each location.

;. Extended-address operation.

; Do next byte in page.

; Move to next page.

; Get high part of address.

; Compare with high part of limit.
; If pointer.high < = limit.high,

i clear another page.

A program that wishes to use more than 32K bytes of memory must
handle the incrementing and comparing of X-bytes in a loop like this:

LDY
STORE LDA
STA
INY
BNE

INC
BNE
LDA
STA
INC

CHECK LDA
CMP
BCC

LDA

CMP
BCC
BEQ

#0
#0
(60).Y

STORE

51
CHECK
#80

51

1651

1651
EXTLIMIT
STORE

51

EXTLIMIT + 1
STORE
STORE

Use Y as an index in each page
Value to put in each location.
Extended-address operation.
Do next byte in page

Move to next page
If same bank, check limit
else
set page to $80
and increment X-byte

Compare X-byte to
limit X-byte
If less than, clear page

else compare page
to limit page
If less than
or equal, clear page

Interpreters and Modules 125

7.1.3 Event Arming and Response

To arm an event, an interpreter may pass the starting address of its event
handler to a device driver that can detect the event. When the event
occurs, the interpreter’s event handler will be called. One way to arm an
event is by aD__CONTROL call to a device driver.

For example, assume that the .CONSOLE device driver defines a certain
keypress as an event. An interpreter that wishes to use this feature would
include a subroutine that is to be called each time that key is pressed. The
interpreter would make a D__ CONTROL call to the .CONSOLE driver,
passing it the ASCII code of the keypress to detect and the address of the
event handler. When the key is pressed, the console queues the event
handler’s address, and SOS calls the event handler to handle the
keypress.

The D__CONTROL calls that arm an event for a given device driver are

described in the documentation accompanying that driver. For the
.CONSOLE events, see the Apple Ill Standard Device Drivers Manual.

7.2 A Sample Interpreter

This section illustrates the desigh and construction of a very simple
interpreter. The example is simple, but has all the parts an interpreter
must have. It shows how SOS calls are made (see Chapter 8 for a full
explanation), and how events are handled. The complete listing of the
interpreter is shown in the next section; in this section we explain
portions in detail.

This model is intended for demonstration only. It does not fully
show all features of SOS (such as memory allocation) available to
an interpreter, nor does it contain comprehensive error-checking
and debugging aids. Use this model only to gain insight into the
construction of an interpreter; please do not base your own

designs upon it.

This program, SCREENWRITER, reads a byte from the keyboard, then
writes it out to the screen, without filtering out control characters. It writes
explicitly, without using screen echo.

126 SOS Reference Manual

The interpreter contains an event mechanism. When CONTROL-Q is
read, the console driver detects it as an event. The event is processed
when control next returns to the interpreter. If the character typed before
the CONTROL-Q is ESC, the event handler beeps thrice and issues a
TERMINATE call; if not, the event handler just beeps thrice.

This interpreter is deliberately inconsistent in style, in order to show
different ways of coding SOS calls. Some calls are coded in line; some,
as subroutines. Some are coded with a macro, SOS; some are not. The
macro itself can use the SOS call number, or the number can be given
the name of the call, via an .EQUate statement.
The syntax for a SOS call using the SOS macro is

SOS call_num, parameter_list pointer
For example, the call

SOS READ, READLIST

uses the label READ, which has been defined as $CA by an .EQUate. This
call could also have been coded as

SOS @CA,READLIST
READLIST is a pointer to the required parameter list. In this sample
interpreter, the required list precedes the call, as the Apple IIl Pascal
Assembler accepts backward references more readily than forward
references.

Here is the macro definition for a SOS call block:

.MACRO SOS : Macro def for SOS call block
BRK ; Begin SOS call block

.BYTE %1 ; call_num

WORD %2 parameter_list pointer

.ENDM ; end of macro definition

Interpreters and Modules 127

After the header and parameter lists for various calls (shown in the
complete listing, but not in this section), comes the main interpreter
program, which is in two sections. The first section, the initialization
block, opens the console and gets its dev_num; turns off screen echo;
passes its ref_num and dev_num to subroutines; arms the attention
event; and sets the fence.

BEGIN .EQU
JSR OPENCONS ; Open .CONSOLE
JSR GETDNUM ; Getdev_num
JSR SETCONS ; Disable echo
JSR ARMCTRLQ . Arm attention event
SOS 60, FENLIST ; Setevent fence to 9:
here we coded "6@" directly
LDA REF : Set up ref_num
STA RREF ; forreads
STA WREF . and writes

The main program loop uses a two byte 1/0 buffer, the second byte of
which is always a line feed (LF). The main program reads a byte from the
keyboard into the first byte of the I/0O buffer, then checks whether that
byte is a carriage return (CR): if so, both bytes in the buffer will be written;
if not, only the first byte will be written. This is done by setting the value of
the write count (WCNT in the listing, or bytes in the call definition) to 2 or
1, respectively. The loop repeats indefinitely; the only exit from the
program is through the event-handler subroutine, HANDLER.

The numbers preceded by a dollar sign, like $818, are local labels. The
numbers are decimal, not hex.

$810 SOSs READ, RCLIST ; Read in one byte:
here we used READ for @CA
LDA RCNT ; IF no bytes were read
BEQ $010 ; THEN go read again
STA WCNT ; Set up write count
LDA BUFFER
CMP #0D ; IFfirst byte in buffer is CR
BNE $020 ; THEN write out LF also
INC WCNT
$020 SOS WRITE, WPLIST ;. Write out 1 or 2 bytes

JMP $010 ; Repeat ad infinitum

SOS Reference Manual

The first subroutine is OPENCONS, which opens the . CONSOLE file for
reading and writing. It consists of a single SOS OPEN call, and is coded
with the parameter lists preceding the call block, which here is coded
without a macro.

COLIST .BYTE 04 ; 4 required parameters for OPEN
WORD CNAME ;. pathname pointer
CREF .BYTE 00 ;i ref_num returned here
WORD COPLIST i option_list pointer
.BYTE o1 ;. length of opt parm list
COPLIST .BYTE @3 ; Open for reading and writing
OPENCONS ; Here we didn't use a macro.
BRK ; Begin SOS call block
.BYTE 0C8 ; Open the console.
WORD COLIST ; Pointer to parameter list
LDA CREF ; Save the result ref_num
STA REF . for READs and WRITEs.
RTS

The next subroutine, GETDNUM, which returns the dev_num of
.CONSOLE, is coded similarly, except that it has no optional
parameter list.

The SETCONS subroutine suppresses screen echo on the .CONSOLE
file. This is a very simple example ofa D CONTROL call, as the control
list is only one byte long; the next is more complex.

SETLIST .BYTE @3 ; 3 required parms for D__CONTROL
CNUM .BYTE 00 i dev_num of CONSOLE
.BYTE @B ;i control_code = @B: screen echo
WORD CONLIST ; control_list pointer
CONLIST .BYTE FALSE . Disable screen echo
SETCONS
LDA CONSNUM ; Set up device number
STA CNUM i of .CONSOLE

SOSs D__CNTL, SETLIST
RTS

Interpreters and Modules 129

The ARMCTRLQ subroutine arms the Attention Event for CONTROL-Q.
The D__CONTROL call in this subroutine sends the event priority, event
ID, event-handler address, and the attention character code to the
CONSOLE driver.

DCLIST .BYTE @3 ; 3required parms for D_CONTROL
DNUM .byte 10} ; dev_num of .CONSOLE goes here

.BYTE 6 i control_code = @6:

: Arm Attention Event

WORD CLIST i control_list pointer
CLIST ; Control list

.BYTE OFF , Event priority

.BYTE @2 ;. EventID

WORD HANDLER i Event handler address
BANK .BYTE 00 ;. Event handler bank

.BYTE 11 i Attention character = CTRL-Q
ARMCTRLQ

LDA BREG ; Set up bank number

STA BANK ;. ofevent handler

LDA CONSNUM ; Set up device number

STA DNUM ; for control request

S0S D__CNTL, DCLIST ; D_CONTROL call macro

RTS

The next subroutine, HANDLER, is the attention event handler. It reads
the attention character (CONTROL-Q) from .CONSOLE, then beeps
thrice. If the previous character was ESCAPE, the program terminates.

A buffer separate from the main I/0 buffer is used for reading the attention
character, as otherwise the attention character would sometimes clobber
the character in the buffer before it could be written to the screen.

The buffer BELLS contains three BEL characters, separated by a number
of SYNC characters. When written to the console, these cause a total
delay of about 158 ms. HBLK1 and HBLK2 are required parameter lists
for the READ and WRITE calls. HBUF1 is a one-byte buffer for the
attention character.

BELLS

BELLEN

HBLK1
HREF1

HBUF1

HBLK2
HREF2

HBLK3

HBLK4

SOS Reference Manual

.EQU

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.EQU

.BYTE
.BYTE
.WORD
WORD
WORD

.BYTE

.BYTE
.BYTE
WORD
WORD

.BYTE
.BYTE

.BYTE

*

07
16,16,16,16,16,16,16,16,16
a7
16,16,16,16,16,16,16,16,16
07

*-BELLS

04

00
HBUF1
001
0000

8

23

00
BELLS
BELLEN

21
/0]

00

Buffer with BELs and delay:
; BEL

; SYNCs

; BEL

; SYNCs

; BEL

Calculate buffer length

4 required parameters for READ
ref_num
data_buffer pointer
request_count
transfer_count

Buffer for reading attention char

; 3 required parameters for WRITE
7 ref_num

; data_buffer pointer

v request_count

; 1required parameter for CLOSE
ref_num = @: CLOSE all files

; @ required parms for TERMINATE

These data structures are followed by the actual code of the event
handler. Here the SOS calls are coded using macros.

HANDLER

$010

LDA
STA
STA

SOS
SOSs

LDA
CMP
BNE

S0Os
SOS

JSR
RTS

REF
HREF1
HREF2

READ, HBLK1
WRITE, HBLK2

BUFFER
#18
$010

PCC, HBLK3
065, HBLK4

ARMCTRLQ

; Set up reference numbers
. forconsole READ
. and console WRITE

: Read attention character

;. Write three BELs to .CONSOLE

; IF last keystroke was ESCAPE

i THEN CLOSE all files
: and TERMINATE

: ELSE re-arm attention event
’ and resume execution

Interpreters and Modules 131

The TERMINATE call could have been coded in the following
perverse way:

TERM BRK ; Begin SOS call
.BYTE @65 ; call_num for TERMINATE
WORD TERM ; parameter_list pointer

Since the TERMINATE call has no parameters, the required parameter list
need be only an ASCII null ($8@). Thus TERM, the parameter_list pointer,
points to the BRK that begins the call.

A simpler coding, using a macro, is this:

TERM S80S 065, TERM ; Pointer to BRK

The following pages contain a complete listing of the program, including

all subroutines and parameter lists, as well as the code necessary to
generate a valid header.

7.2.1 Complete Sample Listing

PAGE - 0

Current memory available: 17406

0000 «ABSOLUTE
0000 .NOPATCHLIST
0000 «NOMACROLIST

2 blocks for procedure code 16136 words left

SOS Reference Manual

PAGE - 1 SCREENWR FILE:

0000

Current memory available:
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

+PROC SCREENWRITER
16881

KRNRARAEARRRIRAKRARKKR KRR R I KRRRIRIRIRARAIRRRRARI R AR Ahhhhhhhkkddk
Screenwriter Program
Sample Interpreter for SOS Reference Manual

Don Reed and Thomas Root, 11 August 1982

This program reads bytes from the keyboard, then writes
them out to the screen, without filtering out control
characters. It writes explicitly, without using screen
echo.

The interpreter contains an event mechanism. When
CONTROL-Q 1s read, the console driver detects it as an
event. The event is processed when control next returns
to the interpreter. If the character typed before the
CONTROL-Q is ESC, the event handler beeps thrice and
issues a TERMINATE call; if not, the event handler just
beeps thrice.

Note on programming style: the style of this program is
deliberately inconsistent, to show several ways to code
$S0S calls. They can be coded in line; they can be coded
as subroutines. They can be coded with or without a
macro, SOS. The macro itself can use the SOS call number,
or it can use the name, via an .EQUate, In general,

data structures appear before the code using them: this

is recommended practice with the Apple III Pascal
Assembler.

The source file for the Screenwriter program is replicated
as SCREENWRIT.TEXT on the ExerSOS disk.

e e o e e e sk o e e e e o s i ke o ok ok e oo o ke *

Interpreters and Modules 133

PAGE - 2 SCREENWR FILE:

0000 PAGE

0000 T L e S T S e T Tt e L]
0000

0000 Header Part of File

0000

0000

0000

0000|9000 START LEQU 9000 ; Code begins at $9000

0000 +ORG START-0E H Leave 12 bytes for header
8FF2

8FF2| 53 4F 53 20 4E 54 52 <ASCII '"S0S NTRP" ; label for SOS.INTERP

8rF9| 50 _

8FFA| 0000 .WORD 0000 ; opt header length =0

8FFC| 0090 «WORD START ; loading address

SEFE| *hkx JWORD CODELEN ; code lemgth

9000 -

9000 4C *%kw JMP BEGIN s Jump to beginning of code

9003

9003 SHRRARIKRHIARNRKRRRRKE I KRR KRR RKEAKRRRNIRIHRREIRRIRR IR RARRRAA KK

PAGE

9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003
9003

3

00cA
00CB
0083

0000
0080

FFEF

SOS Reference Manual

SCREENWR FILE:

+PAGE

Macros, Equates, and Global Data Area
The syntax for a SOS call using the macro below is
S0s call num, parameter list pointer

The macro definition for a S0S call block using the above
format 1s below:

3 Macro def for SOS call block

H
BRK ; Begin SOS call block
+BYTE %1 3 call num

+WORD %2 H paréﬁeter list polnter
+ENDM ; end of macro definition

READ <EQU 0CcA ; call num for READ
WRITE .EQU ocs ; call num for WRITE
D CNTL .EQU 083 H call__num for D__CONTROL

BREG EQU OFFEF ; Bank register

PAGE -

9003
9003
9003
9003
9003
9003
9003
9003
9003
9004
9008
900C
900D
900E
900E
900E
900E
900E
900E
900E
900E
900E
900E
9010
9010
9010
9010
9010
9010
9010
9010
9010
9011
9012
9012
9013
9014
9016
9018
901A
901A
901B
901C
901E
9020
9020

4 SCREENWR FILE:

08
2E 43 4F 4E 53 4F 4C
45
00
00

00 0A

0l
00

04
00
0E90
0100
0000

03
00
0ES0
0000

Interpreters and Modules 135

These variables are used for communication between the

3
0
3 main program and the OPENCONS subroutine,
;
HEEE PrltIsalANNERtsnbIIIIRILARLRIORLLGIOLL
CNAME «BYTE 08 ; name length
L.ASCIT ".CONSOLE" s pathname of console
REF .BYTE 00 ; Console ref num
CONSNUM .BYTE 00 ; Console dev num
FEEIIIIIIIIIIIIIIIIIoGIarIIIIIIIIIIIiIniriTiiiiaiiIioririiiiiiony
H
; Here is the data buffer for the READ and WRITE calls in
3 the main program. Ounly the first byte Is written into;
s one or both are written out,
H
H

i
H
H Here are required parameter lists for SOS calls in the
H main program.

H

FENLIST .BYTE 0l + 1 parameter for SET FENCE
.BYTE 00 3 fence = 0 =
RCLIST LBYTE 04 i+ 4 parameters for READ
RREF <BYTE 00 H ref num
JWORD BUFFER : data buffer pointer
« WORD 0001 ' request count
RCNT JWORD 0000 = transfer count
WPLIST LBYTE 03 3 3 parameters for WRITE
WREF +BYTE 00 N ref num (from OPEN call)
.WORD BUFFER . data buffer pointer
WCNT .WORD 0000 H rengst_count

;***i*************

SOS Reference Manual

PAGE - 5 SCREENWR FILE:

9020 +PAGE

9020 RERREARREREEHRKREKHRIHEHREFRRERIHRERARRIERRKEIKRE IR AR R RRARA IR AE
9020 B

9020 H Main Program Code

9020 H

9020

9020 H

9020 H This 1s the setup portion, executed at the start.

9020 H

9020 H B]
9020

9020| 9020 BEGIN +EQU *

9020| 20 *h*x JSR OPENCONS ; Open .CONSOLE

9023| 20 w&*x JSR GETDNUM 3 Get dev num

9026| 20 ***% JSR SETCONS ; Disable echo

9029| 20 ***% JSR ARMCTRLQ + Arm attention event

902¢C 508 60, FENLIST ; Set eveunt fence to O:

9030 ; here we coded "60" directly
9030

9030| AD 0C90 LDA REF 3 Set up ref num

9033| 8D 1390 STA RREF 3 for reads

9036| 8D 1B9O STA WREF : and writes

9039

9039 R T R N L R AR B R L g LR R PR A SRR S S S AR RG]
9039 3

9039 s This is the main loop, executed until termination.

9039 ¥

9039 AR IR e R R A R GG R A S A ARG RO A AR AT SRRt R
9039

9039 $010 S0S READ, RCLIST 3+ Read in one byte:

903D - here we used READ for OCA
903D| AD 189%0 LDA RCNT 3+ IF no bytes were read

9040| FOF7 BEQ $010 H THEN go read again

9042

9042| 8D 1E90 STA WCNT ; Set up write count

9045| AD OE90 LDA BUFFER

9048(C9 OD CMP #0D 3 IF first byte in buffer is CR
9044 | DO** BNE $020 3 THEN write out LF also

904C| EE 1E90 INC WCNT

904F

904F 020 S0S WRITE, WPLIST ; Write out 1 or 2 bytes

9053

9053| 4C 3990 JIMP $010 ; Repeat ad infinitum

9056

9056 §REE R EA * % KAKEH K *hkk

Interpreters and Modules

PAGE - 6 SCREENWR FILE:

9056 «PAGE

9056 H RRkkkdkk Ak bbb bbb bbb L L L LR L L SR L B TR
9056 3

9056 H SUBROUTINES

9056 H

9056 H

9056 H

9056 H OPENCONS: open the .CONSOLE file for reading

9056 B

9056

9056

9056| 04 COLIST .BYTE 04 3 4 required parameters For OPEN
9057| 0390 +WORD CNAME : pathname pointer

9059| 00 CREF +BYTE 00 : ref num returned here
9054 | *xkw .WORD COPLIST ; optiom list pointer

905C| 01 JBYTE 01 ; length of opt parm list
905D

905p| 03 COPLIST .BYTE 03 ; Open for reading and writing
905E

905E

905E OPENCONS ; Here we didn't use a macro.
905E| 00 BRK ; Begin SO0S call block.

905F| C8 «BYTE 0C8 3 Open the comsole,

9060| 5690 <WORD COLIST ; Polnter to parameter list
9062| AD 5990 LDA CREF i Save the result tef num
9065| 8D 0C90 STA REF i for READs and WRITEs.
9068| 60 RTS

9069

9069

9069 ;

9069 3 GETDNUM: Get the device number of .CONSOLE

9069

9069

9069

9069| 02 GDLIST LBYTE 02 3 2 parameters for GET DEV NUM
906A| 0390 JWORD CNAME : dev name pointer ~
906C| 00 GDNUM .BYTE 00 H dev num goes here

906D -

906D

906D GETDNUM

906D| 00 BRK

Q06E| 84 +BYTE 84 ; Call GET DEV NUM

906F| 6990 «WORD GDLIST - -

9071| AD 6C%0 LDA GDNUM 3 Save the result dev num
9074| 8D 0D90 STA CONSNUM ; for comsole coatrol

9077| 60 RTS

SOS Reference Manual

PAGE - 7 SCREENWR FILE:

9078

9078 -

9078 H

9078 3 SETCONS: set the .CONSOLE file to syppress screen echo
9078 H

9078 srggalTIIRRIIRLLIILITRALGRRLLRNS

9078

9078| 03 SETLIST .BYTE 03 3 3 required parms for D CONTROL
9079 00 CNUM WBYTE 00 ; dev num of .CONSOLE —

907A| OB BYTE 0B H control code = 0B: screen echo
907B| ***% .WORD CONLIST ; control list pointer

907D -

907D| 00 CONLIST ,BYTE FALSE H Disable screen echo

907E

907E

907E SETCONS

907E| AD 0D90 LDA CONSNUM ; Set up device number

9081| 8p 7990 STA CNUM H of CONSOLE

9084 S0S D CNTL, SETLIST

9088| 60 RTS =

9089

9089 R EER

9089 3

9089 H ARMCTRLQ: Arm the Attention Event for CONTROL-Q

9089 3

9089 prvrsdrELERTLRLNLY

9089

9089| 03 DCLIST .BYTE 03 3+ 3 required parms for D CONTROL
908A| 00 DNUM JBYTE 00 : dev num of .CONSOLE goes here
908B| 06 .BYTE 06 ; control code= 06:

908C 3 Arm Attention Event

908C| **wH « WORD CLIST H control list pointer

908E ==

908E CLIST 3 Control list

908E| FF «BYTE OFF - Event priority

908F| 02 (BYTE 02 ; Event ID

9090 **%x +WORD HANDLER 3 Event handler address

9092| 00 BANK .BYTE 00 3 Event handler bank

9093| 11 +BYTE 11 H Attention char = CTRL-Q

9094

9094

9094 ARMCTRLQ

9094| AD EFFF LDA BREG 3 Set up bank number

9097| 8D 9290 STA BANK H of event handler

909A| AD OD9S0 LDA CONSNUM ; Set up device number

909D| 8D 8A90 STA DNUM ; for control request

90A0 sS08 D CNTL, DCLIST ; D CONTROL call macro

90A4| 60 RTS = =

PAGE -

90A5
90A5
90A5
90A5
90A5
90A5
90A5
90A5
90A5
90A5
9045
90A5
9045
90A5
90AS5
90A5
90A5
90A5
90A5
90A5
90A5
90A5
9046
90AD
90AF
90B0
90B7
90B9
90BA
90BA
90BA
90BB
S0BC
90BE
90C0
90c2
90C2
90c3
90C3
90C4
90C5
90c7
90Cc9
90¢9
90CA
90CB
90CB

8 SCREENWR FILE:

90A5

07

16 16 16 16 16 16 16
16 16

07

16 16 16 16 16 16 16
16 16

07

0015

04
00
hkkk
0100
0000

00

03
00
A590
1500

ol
00

Interpreters and Modules

HANDLER: Attention event handler subroutine

This subroutine reads the attention character (CONTROL-Q)
from .CONSOLE, then beeps thrice. If the previous
character was ESCAPE, the program terminates.

A buffer separate from the main data buffer is used for
reading the attentilon character, as otherwise the
attention character would sometimes clobber the character
in the data buffer before it could be written.

The buffer BELLS contains three BEL characters, separated
by a number of SYNC characters. When written to the
console, these cause a total delay of about 150 ms.

BELLS <EQU * ; Buffer with BELs and delay
\BYTE 07 ; BEL
«BYTE 16, 16, 16, 16, 16, 16, 16, 16, 16 ; SYNCs
+BYTE 07 ; BEL
.BYTE 16, 16, 16, 16, 16, 16, 16, 16, 16 3 SYNCs
.BYTE 07 ; BEL
BELLEN LEQU *-BELLS ;5 Calculate buffer length
HBLK1 +BYTE 04 3 4 required parameters for READ
HREF1 .BYTE 00 H ref num
« WORD HBUF 1 H data buffer pointer
.WORD 0001 5 request count
LWORD 0000 ; transfer count
HBUF 1 -BYTE 0 ; Buffer for attention character
HBLK2 .BYTE 03 i 3 required parameters for WRITE
HREF 2 .BYTE 00 H ref num
JWORD BELLS ; data buffer pointer
« WORD BELLEN 5 request_count
HBLK3 «BYTE 01 ; 1 required parameter for CLOSE
+«BYTE 00 H reﬁ_num = 0: CLOSE all files
HBLK4 .BYTE 00 ;3 0 required parms for TERMINATE

S0OS Reference Manual

PAGE - 9 SCREENWR FILE:

90CC «PAGE

90CcC HANDLER

90CC| AD 0C90 LDA REF ; Set up reference numbers

90CF| 8D BB90O STA HREF1 3+ for console READ

90D2| 8D C490 STA HREF2 s and console WRITE

90D 5

90D 5 508 READ, HBLKI ; Read attention character
90D9

90D9 S08 WRITE, HBLK2 3 Write three BELs to .CONSOLE
90DD

90DD| AD OE90 LDA BUFFER

90EC| C9 1B CMP #1B 3 IF last keystroke was ESCAPE
90E2| DO** BNE $010

90E4

90E4 S0S 0CC, HBLK3 H THEN CLOSE all files

90E8 S0S 065, HBLK4 H and TERMINATE

90EC

90EC| 20 9490 $010 JSR ARMCTRLQ H ELSE re-arm attention event
90EF| 60 RTS H and resume execution
90F0

90F0 jRERkRRARE kddkkkkkkkkkikkhhrhkkhik kkkk kkkok
90F0

90F 0 Hidadd krdckkk khkk lealabd b i Rl el
90F0 *

90F0 s End of program —— calculate length

90F0 i

90F0 SIS NIIITTIISIIEIiIIINITIIIIIIIIIIIINIIIIIIIIITIIINIIIINILINILL
90F0

90F0| OOFO ‘CODELEN .EQU *-START ; Caleculate number of bytes in
90F0 .END H program

interpreters and Modules

PAGE - 10 SCREENWR FILE: SYMBOLTABLE DUMP

AB - Absolute LB - Label UD - Undefined MC - Macro

RF - Ref DF - Def PR - Proc FC - Func

PB ~ Public PV - Private CS - Consts

ARMCTRLQ LB 9094 BANK LB 9092 BEGIN LB 9020 BELLEN AB 0015
CLIST LB 908E CNAME LB 9003 CNUM LB 9079 CODELEN LB 0QFQ
COPLIST LB 905D CREF LB 9059 DCLIST LB 9089 DCNTL AB 0083

GDLIST LB 9069| GDNUM LB 906C| GETDNUM LB 906D| HANDLER LB 90CC
HBLK4 LB 90CB| HBUF1 LB 90C2| HREFl LB 90BB| HREF2 LB 90C4

READ AB 00CA| REF LB 900C RREF LB 9013 SCREENWR PR —=---
START AB 9000| TRUE AB 0080| WCNT LB 901E| WPLIST LB 901A
BELLS LB 90A5| BREG AB FFEF| BUFFER LB 900E

COLIST LB 9056 CONLIST LB 907D| CONSNUM LB 900D
DNUM LB 908A| FALSE AB 0000 FENLIST LB 9010
HBLK1 LB 90BA| HBLK2 LB 90C3| HBLK3 LB 90C9
OPENCONS LB 905E| RCLIST LB 9012 RCNT LB 9018
SETCONS LB 907E SETLIST LB 9078| 50S MC -——-
WREF LB 901B| WRITE AB 00CB

SOS Reference Manual

PAGE - 11 SCREENWR FILE:

Current minimum space 1is 15687 words.

Assembly complete: 394 lines
0 Errors flagged on this Assembly

Interpreters and Modules 143

7.3 Creating Interpreter Files

The Apple 1ll Pascal Assembler reads a source text file of assembly-
language statements and creates a code file consisting of a header block,
a code section, and a relocation section, if the code file is relocatable. A
SOS interpreter file must be in a format different from the standard code
file format that is used for a module:

¢ It must be in absolute format, beginning at the proper memory location.

* It must have a special header that identifies the file as an interpreter,
and the standard header and trailer must be removed.

e |t must be named SOS.INTERP before it can be booted.

A utility program, Makelnterp, transforms code files into
interpreter files. Its use is described in Appendix C.

7.4 Assembly-Language Modules

An interpreter that is too large to fit into the the memory space allocated
for it can be split up into a main interpreter and one or more assembly-
language modules. An interpreter can also use modules if it is made to be
extensible, or if it wishes to swap sections of machine code in and out of
memory. A language interpreter may use modules to allow the user
programs it interprets to call assembly-language subroutines.

SOS does not directly support creating, loading, or maintaining modules:
modules are defined, loaded, and called by the interpreter only.

Whereas an interpreter must be written and assembled in absolute code,
a module can be in either absolute or relocatable format. A stand-alone
interpreter performing an application will probably only have to support
absolute modules, if any. A language interpreter, however, may support
relocatable modules, as do the BASIC and Pascal interpreters.

SOS Reference Manual

7.4.1 Using Your Own Modules

An interpreter can use the REQUEST __ SEG call to request a fixed memory
segment in free memory, then load a 6502 code file into this space and
execute its code. An interpreter can execute modules located in bank-
switched memory by using the technique described in section 2.4.1.

In this way, an interpreter can have several sections of overlay code—
subroutines that are swapped into a certain memory space only when
they are needed, and are replaced by other code when their usefulness is
expended. This is illustrated in Figure 7-2.

SOS kernel $0000
module free memory driver $2000
5. i last
module soe driver k- R
interpreter
free memory driver = _
__________ $A000
$B800
SOS kernel
$FFFF

Figure 7-2. Interpreter and Modules

Rather than allocating free memory, an interpreter can also overlay code
into itself and execute it without bank-switching. This technique is
dangerous unless you carefully control which parts of the interpreter are
being overwritten.

Interpreters and Modules 145

7.4.2 BASIC and Pascal Modules

The Apple Pascal and Business BASIC languages both have facilities for
loading assembly-language modules or linking them with a Pascal or
BASIC program. The modules are in the relocatable format produced by
the Apple Pascal Assembler: the Pascal and BASIC interpreters are both
designed to load, relocate, and execute files in this format.

The BASIC and Pascal interpreters each place a module in a convenient
place in memory, then use the relocation information in the code file to
alter the program code to run in its new location. A BASIC program
communicates with modules via PERFORM and EXFN statements; a
Pascal program uses EXTERNAL PROCEDURE and FUNCTION calls.
Whereas invokable modules used by BASIC are loaded dynamically at run
time, modules used by Pascal are linked in with the Pascal host program
during a post-compilation linking phase, and are stored as part of the final
code file.

Both the BASIC and Pascal interpreters pass parameters to their modules
via the interpreter’s stack. The modules remove and store the return
information, then pull the parameter bytes off the stack and process them.
When they are finished, they push the return information back on the
stack and perform an RTS.

A module used by the BASIC or Pascal interpreter does not need
to know any entry points in the interpreter.

A module can access your programs or data by means of pointer
parameters. The interpreter passes the two bytes of the pointer on the
stack, and sets up the X-bytes of the pointer in a fixed location in the
interpreter’s X-page. The module pulls the pointer off the stack and stores
its pointers in the proper places in the zero page: it can then use extended
addressing to access the host program’s data structures.

You can find more information on the use of assembly-language modules
with Pascal in the Apple /1l Pascal Program Preparation Tools manual, in
the chapter The Assembler.

SOS Reference Manual

7.4.3 Creating Modules

Modules can be in either of two formats; absolute and relocatable. The
absolute form is easier to load, but less versatile. If you can be sure a
particular region of memory will be available for a module, you can
assemble that module to fit into that region, and write a routine into your
interpreter to load that module into that region. In doing so, you must take
into consideration whether assembling a module to run in a particular
region will affect the interpreter's memory requirements. You can also do
this with a number of modules: you can even assemble several modules
for the same region, if they are to be used one at a time and swapped in
as needed.

Relocatable modules can go anywhere in free memory, so they can more
easily be used by machines of different memory sizes, driver sets, and so
forth. A language interpreter that supports modules will probably support
relocatable modules. However, such an interpreter must take care of the
relocation itself. This task goes beyond the scope of this manual. The data’
formats of relocatable assembly-language code files are described in
Appendix E; more detail is in the Apple Il Pascal Technical Referenct
Manual. If you are designing an interpreter that supports relocatable
modules and need further assistance, contact the Apple PCS Division
Technical Support Department.

Making SOS Calls

Making SOS Calls

148 8.1 Types of SOS Calls

148 8.2 Form of a SOS Call

148 8.2.1 The Call Block

150 8.2.2 The Required Parameter List
152 8.2.3 The Optional Parameter List
154 8.3 Pointer Address Extension

155 8.3.1 Direct Pointers

155 8.3.1.1 Direct Pointers to S-Bank Locations

156 8.3.1.2 Direct Pointers to Current Bank Locations

156 8.3.2 Indirect Pointers

157 8.3.2.1 Indirect Pointers with an X-Byte of $00

158 8.3.2.2 Indirect Pointers with an X-Byte Between $89 and $8F

159 8.4 Name Parameters
160 8.5 SOS Call Error Reporting

SOS Reference Manual

8.1 Types of SOS Calls

An interpreter communicates with SOS primarily through SOS calls.
A SOS call is a request that SOS perform an action or return some
information about a file, device, or memory segment.

SOS calls fall into four categories:

¢ File calls, which manipulate files according to the file model
presented in Chapter 4;

e Device calls, which manipulate devices according to the device
model presented in Chapter 3;

e Memory calls, which allocate and release memory for
interpreters and keep track of areas of free memory; and

o Ultility calls, which access the system clock, the event fence,
and other resources.

The individual SOS calls are presented in Volume 2. The way a SOS call
is made, however, is the same regardless of the function of the particular
call; the remainder of this section discusses how an interpreter makes
SOS calls.

8.2 FormofaSOS Call

A SOS call has three parts: the call block, the required parameter list, and
the optional parameter list. Not every call has every part. The parts need
not be in any particular order, and need not be contiguous, as they are
linked by pointers.

8.2.1 The Call Block

A SOS call begins with the call block, a four-byte sequence executed as
part of an interpreter’s code. Figure 8-1 is a diagram of a call block, along
with the code implementing it:

Making SOS Calls

54F9|00 CALBLK BRK
54FA|C8 BYTE@CS:OPEN $54F9 | $00 BRK
54FB|2052 \WORD PLIST ; PTR

$54FA $C8 call_num
value

$54FB | $260 parm_list

$54FC | $52 pointer

Figure 8-1. SOS Call Block
The SOS call block has three fields:

BRK (1 byte):
This field always contains the BRK opcode, $00;

call_num (1 byte):

This field contains the SOS call number, which must correspond to a valid
SOS call.

parm_list (2 bytes):

This field contains a pointer to the required parameter list for this SOS
call. The parm_list is an address in S-bank notation, $nnnn, which specifies
alocation in the current bank or in the S-bank, never in the zero page. The
location specified contains the first byte of the required parameter list for
the call being made: the required parameter list is described below.

If the call_num or the parm_list is invalid, SOS returns an error code to
the caller.

If the format of the SOS call is correct, SOS performs the requested
action. After the call is completed, SOS restores the state of the machine
(the values in the X- and Y-registers and all status flags except Z and N)
and returns control to the caller. If an error was encountered, the error
code is returned in the accumulator. If the call was error-free, the
accumulator returns $00. You can think of a SOS call as a 4-byte LDA
#ERRORCODE instruction; you can check for the presence of an error
code with the BEQ and BNE instructions.

150 SOS Reference Manual

8.2.2 The Required Parameter List

The required parameter list is a table in memory that the interpreter uses
to communicate with SOS. It is from here that a SOS call gets the
information it needs, and it is also hére that the call returns information
to the caller.

Each SOS call expects a certain number of parameters: the number and
type of parameters is different for each call. But the first byte of the
required parameter list for any SOS call always contains the number of
parameters for the call (not the number of bytes in the list). SOS checks
this number against the number of parameters the call is expecting, to
verify that you've supplied the correct list for that call. If the numbers don’t
match, SOS returns an error message.

Figure 8-2 is a required parameter list:

Making SOS Calls

54F9|00 CALBLK BRK
54FA|C8 BYTE @C8;OPEN $54F9 | $00 BRK
54FB|2052 WORD PLIST:PTR

call_num
$54FA $CB value

$54FB | $28 parm_list

$54FC | $52 pointer

522¢|@4 PLIST .BYTE 04
5221|652 PATHN WORD FILE1;PTR $522¢ | $04
5223|¢¢ REFNUM .BYTE 09:VALUE
5224|@@52 OPLIST WORD REQACC;PTR g5221 | $06 pathname

5226|@4 OPLEN BYTE @4:VALUE b ___|

$5222 | $@52 pointer

parm_count
value

ref_num
$5223 | $00 result

$5224 | $0p option_list

$5225 | $52 pointer

length
$5226 | $04 value

Figure 8-2. The Required Parameter List

This list contains all the required parameters for the call. A value must be
supplied for each parameter: no default values are assumed. The number
of parameters and the length of the required parameter list are constant
for any one SOS call, and usually different for every call.

Parameters are of the four types listed below.

e Avalue parameter is 1, 2, or 4 data bytes passed from the caller to
SOS. The caller places a value in the proper field of the parameter
list, destroying its previous contents; SOS reads it without
changing it.

® A result parameter is 1, 2, or 4 data bytes returned by SOS to the
caller. SOS places a result in the proper field of the parameter list,
destroying its previous contents; the caller reads the result
without changing it.

152 SOS Reference Manual

o Avalue/result parameter is 1, 2, or 4 data bytes that are read and
modified by SOS: the value and the result share the same space.
The caller places a value in the proper field of the parameter list,
destroying its previous contents; SOS reads the value and
replaces it with a result, destroying the value. Few parameters
are of this type.

e A pointer parameter is a 2-byte address (in any format—see
section 8.3.1 below) that specifies the beginning of a buffer
established by the caller. SOS uses the pointer to read information
from the buffer or to return data to the same buffer. Pointers allow
you to exchange variable-length data with SOS. Pointers are
discussed in more detail in section 8.3.

The calling program supplies a pointer to SOS: SOS never returns or
alters a pointer. It either reads from or writes to the buffer the pointer
points to.

Some required parameter lists can be used for more than one call, usually
for a pair of complementary calls. In the case of GET__FILE__INFO and
SET__FILE__INFO (which read and change miscellaneous information
about a file), you can call the former, examine its results in the required
parameter list, perhaps change them, and call the latter with the same
required parameter list to make your changes take effect.

8.2.3 The Optional Parameter List

Some SOS calls have parameters that need not be supplied for their
simplest operation. These parameters are stored in an optional parameter
list. A pointer (option_list) in the required parameter list specifies the first
byte in the optional parameter list, and a length parameter in the required
parameter list indicates how many bytes of optional parameters are
supplied. Figure 8-3 is an optional parameter list:

Making SOS Calls 153

54F9|09 CALBLK BRK

54FA| C8 .BYTE 0C8; OPEN $54F9 $o0 BRK
54FB| 2052 WORD PLIST;PTR pE——
$54FA $C8 value

$54FB | $20 parm_list

$54FC $52 pointer

s2p|ga PLIST BYTE 04

5221(0652 PATHN WORD FILET;PTR $5220 | gp4 PETTCoURt
5223)09 REFNUM BYTE 00;VALUE
5204|0952 OPLIST WORD REQACC;PTR $5221 | $06 pathname
5226|p4 OPLEN BYTE 04;VALUE |ooooooooo .

$5222 $52 pointer

ref_num

§5223 | $00 "ol

$5224 | $00 option_list

$5225 $52 pointer
length
$5226 $04 value
5200|038 REQACC BYTE 03:VALUE
5201|04 PAGES WORD @4:VALUE 95200 | gp3 feq.a&ccess

value
5202|¢@55 IOBUF WORD @9;PTR

pages
$5201 %04 value

$5202 | $00 io_buffer
________________ — i
$5203 | $55 pointer

Figure 8-3. Optional Parameter List

154 SOS Reference Manual

You can supply any number of optional parameters, depending upon
what you want the call to do. If the length of the optional parameter list
is $@9, the call will expect no optional parameters. If the length is non-
zero, the call will expect as many optional parameters as can fit in that
number of bytes.

Some calls supply default values for optional parameters that are not
supplied; see the individual call description.

8.3 Pointer Address Extension

Some parameters in the parameter lists are pointers, which are simply
addresses of other data structures (usually buffers) in memory. You can
supply these addresses in S-bank, current-bank, indirect, or extended
format, all of which are described in section 2.1.

When you make a SOS call involving a buffer, you must give a pointer

to the buffer, and the number of bytes to be acted on. For example, the
READ call requires a data_buffer pointer and a request_count parameter
specifying how many bytes are to be read. SOS takes care of incrementing
the pointer to read successive bytes: you need only tell it how to find the
first byte.

There are two kinds of pointers:

e Adirect pointer is a two-byte address in current-bank or S-bank
format. This address is that of the beginning of the buffer in the
current or S-bank.

o A indirect pointer is a two-byte address whose high byte is $80.
This address specifies a zero-page location: the location contains
the indirect or extended address of the beginning of the buffer
in memory.

SOS converts both kinds of pointers into extended addresses. It does not
change the pointers in your parameter list: instead it moves them to its
own zero page so it can use them as extended addresses. The following
paragraphs describe how SOS handles different kinds of pointers.

Making SOS Calls 155

For all pointer conversions, SOS checks only that the pointer
indicates a valid location: it does not ensure that the structure
pointed to is in a valid place. It does not verify that the location
pointed to actually exists in system RAM. There are limits on how

big and where the buffer can be: such restrictions are discussed
with each conversion.

8.3.1 Direct Pointers

A direct pointer can specify a location in either the S-bank or the current
bank. If the latter, the current bank can be either bank @ or some other
bank. These cases are considered here.

Figure 8-4 shows a direct pointer:

LA S
i
s7141 | ‘_'f‘f’ _____
$41 pointer
$62A4 low byte $7142
$71 pointer
$62A5 high byte
e N

Figure 8-4. A Direct Pointer

8.3.1.1 Direct Pointers to S-Bank Locations

SOS moves the pointer directly to its zero page without conversion, and
sets the X-byte of the pointer to $8@ to form a normal indirect address.

Original Pointer Extended Form

$nnnn $AQ00 to $B7FF $00:nnnn $00:A000 to $00:B7FF

SOS Reference Manual

A buffer that begins in the S-bank must reside in a contiguous

region of S-bank memory. For example, if you start reading from
a buffer beginning at location $A@00 and read $200 bytes, you will
cover the address range $AP90 to $A1FF. If you read beyond
$B7FF, you will run into SOS's region.

8.3.1.2 Direct Pointers to Current Bank Locations

SOS converts such pointers to extended form. If the current bank is not
bank @, SOS creates an X-byte based on the caller’s current bank number, b.
The result is converted to ensure that the resulting pointer specifies

neither the zero page nor the last page of a bank pair.

Original Pointer (bank <> @) Extended Form
$nnnn $2000 to $21FF $xx:nnnn $8b-1:8000 to $8b-1:81FF
Snnnn $2200 to $9FFF $xx:nnnn $8b:@200 to $8b:7FFF

If the current bank is bank @, then the address is converted to an
extended address whose X-byte is $8F.

Original Pointer (bank = 0) Extended Form

$@:nnnn $0:2000 to $0:9FFF $8F:nnnn $8F:2000 to $8F:9FFF

A buffer that begins in switched memory must lie entirely within
switched memory. If a buffer begins between $b:2000 and
$b:9FFF, it can extend up to 64K bytes, and can wrap across
bank boundaries, if b is not zero. For example, if you start reading
from a buffer at $b:9F@® and read $200 bytes, you will cover the
ranges $b:9F@@ to $b:9FFF and $b+1:200@ to $b+1:20FF. However,
the buffer may not go into the address range $A@20 to $FFFF.

8.3.2 Indirect Pointers

Indirect pointers are always stored on the caller’s zero page. The two-byte
value in the parameter list is the address of the pointer on zero page.
When SOS processes an indirect pointer, it moves the two bytes of the
pointer from the caller’s zero page to its own zero page, and also moves
the X-byte of that pointer to its own X-page.

Making SOS Calls 157

An indirect pointer can have an X-byte equal or unequal to zero: if itis
equal to zero, the bank number can likewise be equal or unequal to zero.
These cases are considered here.

Figure 8-5 shows an indirect pointer:

N Ve W "\/\/\N\.-
$20pointer | e | |
soent low byte woa $81: 7141 data
$00 pointer —{ $41 pointer _J i
high byte $0021 low byte $81:7142
$71 pointer g o« 777777
high byte
I~ AN e A~ A .
B o
------------- e TN
$1620
$81 pointer
$1621 bt »
R e E e

Figure 8-5. An Indirect Pointer

8.3.2.1 Indirect Pointers with an X-Byte of $00

These pointers are converted by SOS to full extended addresses, as in
the direct-pointer examples above. An indirect pointer with an X-byte of
@0 is identical to a direct pointer and follows the cases shown above.
SOS creates an X-byte based on the caller’s current bank number, b.
The address may be converted to prevent it from pointing to the zero
page, as shown in the first line below.

Original Pointer Extended Form

$00:nnnn $00:$2000 to $00:$21FF $xx:nnnn $8b-1:8000 to $8b-1:81FF
$00:nnnn $00:$2200 to $00:$9FFF $xx:nnnn 8b:0200 to $8b:7FFF

If the current bank is bank @, the address is converted to an extended
address whose X-byte is $8F.

158 SOS Reference Manual

Original Pointer (bank = 0) Extended Form

$90:nnnn $00:2000 to $00:9FFF $8F:nnnn $8F:2000 to $8F:9FFF

A buffer that begins in switched memory must lie entirely within
switched memory. If a buffer begins between $b:2000 and
$b:9FFF, it can extend up to 64K bytes, and can wrap across
bank boundaries, if b is not zero. For example, if you start reading
from a buffer at $b:9F@0 and read $200 bytes, you will cover the
ranges $b:9F@0 to $b:9FFF and $b+1:2000 to $b+1:20FF. However,
the buffer may not go into the address range $A200 to $FFFF.

8.3.2.2 Indirect Pointers with an X-Byte Between $80 and $8F

These pointers are invalid if they point to the zero page or stack:

Original Pointer Extended Form
$80:nnnn $80:0000 to $80:01FF Invalid
$8x:nnnn $8b:0000 to $8b:00FF Invalid

The range of addresses in the second line could be replaced by alternate
form, $8b-1:8000 to $8b-1:80FF. This trick doesn’t work in the first case,
as bank @ is the lowest bank.

Indirect pointers that have an X-byte between $80 and $8E are converted
only to ensure that addresses produced by indexing on them do not point
to the zero page. The pointers below are converted:

Original Pointer Extended Form

$8x:nnnn $8b:0100 to $80:01FF $8x:nnnn $8b-1:8100 to $8b-1:81FF
$8x:nnnn $8b:FFO0 to $80:FFFF $8x:nnnn $8b+1:7F@A to $8b+1.7FFF

The pointers below are unchanged:

Original Pointer Extended Form

$8x:nnnn $8b:0200 to $8b:FEFF $8x:nnnn $8b:0200 to $8b:FEFF
$8F:nnnn $8F:2000 to $8F:B7FF $8F:nnnn $8b:2008 to $8b:B7FF

Making SOS Calls 159

The X-byte $8F is a special case that looks like a direct pointer if b is zero.

The buffer that the above address points to can contain up to $FFFF
bytes, and can wrap from one switched bank to another. SOS will handle
all the pointer manipulations automatically. A buffer cannot, however,

cross over into S-bank space; and it must reside in no more than three
adjacent banks.

8.4 Name Parameters

Many SOS calls use device names, volume names, or pathnames as
parameters. Since a name is a variable-length string of characters, it
cannot be included in a parameter list: you must supply a pointer to a
name. The pointer can be specified in any of the formats described above.
Figure 8-6 illustrates the format of a name parameter.

$32A0 | $02

$32A1 L$BS dev_name

$32A2 | $5A pointer

dev_num
$32A3 | $00 result

$5AB3| sp3 length

value
$5AB4 | $2E b
$5AB5 | $44 ‘D
$5AB6 | -$-31-- o -1_ -----

Figure 8-6. Format of a Name Parameter

SOS Reference Manual

The first byte pointed to by the parameter contains the number of
characters in the rest of the name; the bytes immediately following
contain the individual characters in sequence.

Device and volume names can contain up to 15 characters: such names
use 2 to 16 bytes of storage. Pathnames can be up to 255 characters in
length: such names require 2 to 256 bytes of storage.

8.5 SOS Call Error Reporting

After execution of a SOS call, the accumulator contains the error code
reported by the call, and the N and Z status flags are updated accordingly.
All other registers are returned to their state before the call. If the call was
completed successfully, the accumulator contains $0@: a BEQ instruction
can detect a successful SOS call.

Error numbers range from $01 to $FF. Errors can be classified into groups
by their error numbers:

e Error codes $@1 through $05 indicate a problem with the form of
the SOS call, or its parameters or pointers.

e Error codes $10 through $2F indicate device call errors. Either a
requested operation is not supported by SOS, or the operation
cannot be performed due to interface problems with a device.
Some of these errors can also be produced by file calls.

e Error codes $30 through $3F are generated by individual device
drivers, and they indicate a problem in a particular device.

e Error codes $40 through $5A indicate file call errors.
e Error codes $7@ through $7F indicate utility call errors.

e Error codes $E0 through $EF indicate memory call errors.
These errors can be generated by SOS for any SOS call.

$01: Invalid SOS call number (BADSCNUM)

The byte immediately following the BRK instruction ($00) in the SOS call
block is not the number of a currently defined SOS call.

Making SOS Calls 161

$02: Invalid caller zero page (BADCZPAGE)

SOS requires that the interpreter use page $1A as its zero page when
calling SOS.

$03: Invalid indirect pointer X-byte (BADXBYTE)

The extension (X-) byte of an indirect pointer is invalid. Legal values for
this byte are

$00 Indirect, current bank
$80 through $8E Indirect, extend bank
$8F Indirect, S/ bank

$04: Invalid SOS call parameter count (BADSCPCNT)

The first byte of the required parameter list contains a parameter count
not expected by the specified SOS call. Either the call number is incorrect
or the call is using the wrong required parameter list.

$05: SOS call pointer out of bounds (BADSCBNDS)

A SOS call pointer parameter is within a proscribed range of memory.
Either the required parameter list resides on zero page or a pointer is
attempting to point into SOS. The proscribed memory ranges are:

$0100 through $O1FF Restricted for SOS
$B80@ through $FFFF Restricted for SOS

$xx:0000 through $xx:00FF Zero Page

$8F:0100 through $8F:@1FF Restricted for SOS
$8F:B800 through $8F:FFFF Restricted for SOS

SOS Reference Manual

Page references in Volume 2 are shown in square brackets [].

A
absolute
code 120
mode 29
modules 143
orrelocatable format 143

access 63,68, 81, 84, 88, 90, [11],

(18]
data 10, 27,29-32
path(s) 52
information 64-66
maximum number of 53
multiple 52
techniques 27-38
accessing
alogical device 41
zero page and stack, warning
17
ACCSERR [55]
accumulator 110
ADC 31
address(es) 15
bank-switched 10, 12, 30, 32
bus 10
conversion 25, 32-35
example 122

current-bank 12,38

extended 13,38
notation 15

extension, pointer 154-159

invalid 13

limit 122

notation
bank-switched 15
extended 15
segment 23-27

of blocks 96,97

of event handler 108

relocatable [138]

risky 15
risky regions 32
S-bank 12,38

segment 24,38

notation, S-bank 25
three-byte 13
two-byte 12

addressing

bank-switched memory 10-13,
30-31

enhanced indirect 10, 13-16,
31-32

indirect-X 13

indirect-Y 13

SOS Reference Manual

modes 10-16
enhanced 8
module 27-29
normal indirect 14
restrictions 15
subroutine 27-29
ALCERR [128]
algorithms 32
reading a directory file 91-92
incrementing a pointer 36-37
sample 27
allocate memory 25
allocation 7,23
of a segment of memory 121
scheme, block 95
analog inputs 113
AND 31
Apple Ill, overview of 3-8
Apple Ill Pascal Assembler 145,
[132], [134]
Apple Il Processor xvii
arming events 108, 125
ASCIE [139]
ASCIl equivalents [117]
Assembler, Apple Pascal 145,
[132], [134]
assembly language 5
code file(s) [131-139]
data formats for relocatable
146
module 19, 118, 143-146
linking 145
loading 145
procedure [136]
attribute tables [136], [137]
programming xvii
asynchronous operations 5
of device drivers 104
attribute table [136], [138]
assembly-language procedure
[136]

format of [137]
procedure [136]

AUDIO [111]

audio [111]

aux_type 64,88, [5],[14], [19]

B
Bfield 14
backup bit 90, [12], [18]
Backup [l 90, [13]
BADBKPG [88]
BADBRK [127]
BADBUFNUM [128]
BADBUFSIZ [128]
BADCHGMODE [88]
BADCTL [71]
BADCTLPARM [71]
BADCZPAGE 161
BADDNUM [71]
BADINT [127]
BADJMODE [104]
BADLSTCNT [56]
BADOP [72]
BADPATH [53]
BADPGCNT [88]
BADREFNUM [54]
BADREQCODE [71]
BADSCBNDS 161
BADSCNUM 160
BADSCPCNT 161
BADSEGNUM [88]
BADSRCHMODE [88]
BADSYSBUF [56]
BADSYSCALL [127]
BADXBYTE 161
BCBERR [128]
bank

$0 16

current 12

highest 11

switchable 15

number 15
pair 13,14
highest 15
part of segment address 25
register 11,19,28
restoring contents of 31
switchable 11
bank-pair field 14
bank-switched address 10, 12,
30, 32
as intermediate form 32
notation 15
bank-switched memory
addressing 10-13, 30-31
bank-switched notation 23
bank-switching 27,28, 30
for dataaccess 30
for module execution 30
restrictions 28
base 23,122, [43], [48], [75], [78],
(83]
BASE 122
base-relative relocation table
[138]
BASIC 118,143
and Pascal modules 145
interpreter 145
program 145
BCS [139]
bibliography [141]
bit
backup 90, [12], [18]
destroy-enable [12], [18]
enhanced-addressing 14
map 54
read-enable [12], [18]
rename-enable [12], [18]
write-enable [12], [18]
bit_map_pointer 82
BITMAPADR [56]
.BLOCK [139]

block(s) 77
addresses of 96, 97
allocation

for sparse files 98
scheme 95

altering configuration 46
call 148-149, [x]
configuration 43
altering 46

data 93,96

device 8,40,76

logical 53

status request $0¢ [60]
device information (DIB) 43
DIB configuration 43
file 50-56, 62

control 64

structure of 50-51
index 93,94

key 77,82,693,97
logical 77

master index 94,96, 97
maximum index 94
onavolume 77
SOScall [103]
subindex 94,96
total 45,82

blocks_used 63,87, [19]

BNE [139]

bootstrap
errors [128]
loader 77,93

BRK 149
instruction 8

BTSERR [55]

buffer
data 50, [117]

editing [117]
/0 50
space, for drivers 21
string [117],[118]

BUFTBLFULL [56]

166 SOS Reference Manual

.BYTE [139]
byte 99, [133]
extension 14,31 (See also
X-byte)
locating in a standard
file 98-99
numbering 51
order of pointers 79
position, logical 98

C
call(s)
block 148-149, [x]
SOS [103]

choosing [114]
coding TERMINATE 131
D__CONTROL 128
device 46-47,[58-71]
errors [71-72]
management 5
errors

device 160, [71-72], [125]
file 160, [53-56], [125-126]
memory 160, [88]
utility 160, [104], [126]
file 69-73, [2-53]
errors [53-56]
management 5
FIND__SEG 30

form of the SOS 160
memory 25-27, [74-87]
errors [88]
management 5

OPEN 128
REQUEST_SEG 30
SOS 8

error reporting 160
formofa 148-154
typesof 148

utility [90-103]

errors [104]
management 5

call_num 149, [xi]
capacity of a file, maximum 94
carry 15
CFCBFULL [53]
changing device
name 46
subtype 46
type 46
changing slot number 46
change_mode [81]
CHANGE__SEG 26, [81-82]
character
device 8,40
control code $81 [64]
control code $02 [64]
status request $91 [60]
status request $02 [61]
file(s) 50-56, 57
structure of 50-51
line-termination 67
newline 67
null (ASCII $0@8) 97
streams 40
termination 67
circumvention of programming
restrictions 3
clock 112-113, [95], [97], [98]
rate 19
system 112
CLOSE 66,68, 72,90, [39-40]
closed files 52-53
closing files before TERMINATE
[103]
CMP 31
code
file(s) 145
data formats of relocatable
assembly-language 146
organization [132]
assembly-language [131-139]
code partof [135]
fragments, examples xiv

interpreter, executing 10
part of a code file 119, 121,
[132], [135]

segments, executing 27
sharing 44

procedure [136]
code_length 120
CODEADDR [134]
CODELENG [134]
colon 15
command interpreter [103]
common code 44
common file structure 3
common foundation for
software 3

defined 2
communicating with the
device 42
comparing two pointers 37-38
compatibility with future
versions 18
conditions for enhanced indirect
addressing 31
configuration block 43
alter 46

DIB 43
conflicts

between interrupts 104
with zero page 16
.CONSOLE 66, 105, 108, 125,
[109]
console 40
constant, relocation [138]
control

block, file 64

flow of 27

transfer 28
CONTROL-C [117]
CONTROL-RESET [117]
control_code [63]

$01, character device [64]
$02, character device [64]

control_list [63]
conversions 32
copy-protection [103]
copying sparse files 98
CPTERR [55]
CPU 104
CREATE 68, 69, 90, 98, [3-6]
creating interpreter files 143
creation date and time 64, 81, 84,
88, 89-90

field 89-90
current

bank 12

direct pointersto 156
directory 62

position marker 51
current-bank

address 12,38

form 13
cylinders 77

D
.D1 [109]
.D2 [109]
.D3 [109]
.D4 [109]
D__CONTROL 45,47,108, 125,
128, [63-64], [118]
D__INFO 43,45,47, [67-71]
D__STATUS 45,46, [59-61],[118]
data
access 10, 27,29-32
bank-switching for 30
and buffer storage 19
block 93,95,96
buffer 50, [117]
editing [117]
formats of relocatable
assembly-language code
files 146
in free memory 30

SOS Reference Manual

data_block 99
data_buffer [35], [37]
date and time
creation 64,81, 84, 88, 89-90
format 90
last mod 64, 88, 89-90, [14],
(19]
decimal numbers xix
decimal point xix
DESTROY 68,69, [7-8]
destroy-enable bit [12], [18]
detecting anevent 105
dev_name 43, 60, [23], [65], [67]
dev_num 43, [59], [63], [65], [67]
dev_type 44,45, [68]
device(s) 8,40-42
addinga 46
block 8,40
call(s) 46-47
errors 160, [125]
changing name of 46
character 8,40
communicating with the 42
control information 45
correspondence
logical/physical 54
special cases of 54
defined as logical device 54
driver(s) 5,41,77,104, 107,
108, 125
asynchronous operation of
104
environment 20-21
errors, individual 160
graphics 16
standard [109-111]
memory placement 21
independence 7,67
information 43-44
block (DIB) 43
input 40

logical 40
block 53
managementcalls 5
multiple logical 54
name(s) 41-42,44, 50, 55, 60
illegal 42
legal 42
syntax 42
number 44
operationson 45-46
output 40
peripheral 8,104
physical 40
random-access 7
removinga 46
requests 50
sequential-access 7
status information 45
subtype 44
changing 46
type 44
changing 46
device-independent I/O0 67
DIB
configuration block 43
header 43
dictionary 8
current 62
entry 62
procedure [135], [136]
error (DIRERR) [55]
file 57-58
format(s) 78-92
header 78
storage formats 76
segment [132], [134]
volume 54,57,78
digit(s) 42,56
hexadecimal 12
direct pointer 154, 155
to S-bank locations 155
directory file, readinga 91-92

DIRERR [55]
DIRFULL [55]
disarming events 108
Disk Il driver 41
disk drives 40
disk, flexible 42,77,93
DISKSW [72]
dispatching routine 28
displacement [43], [48]
Display/Edit function [117]
DNFERR [71]
dollar signs xviii, xix
driver
device See device driver
module 41
placement of 44
DRIVER FILE NOT FOUND
DRIVER FILE TOO LARGE
DUPERR [54]
DUPVOL [56]

[129]
[129]

E
E-bit 14
editing data buffer [117]
EMPTY DRIVERFILE [129]
empty file 65
end-of-file marker
enhanced
addressing bit 14
addressing modes 8
indirect addressing 10, 13-16,
27,30, 31-32
conditions for 31
ENTERIC [138]
entries_per block 82, 85,92
entry (entries) 86
active 86
directory 62
FCB 53,62
format compatibility 91
inactive 86

See EOF

points 145
storage formats of 76
entry_length 81,84,92
environment
attributes 19
execution 16-22
interpreter 18-19
SOS device driver
SOS Kernel 19-20
summary 22
EOF 51,53, 63, 64-65, 68, 87, 89,
94, 95, 96, 97, 98, [5], [19], [49]
limit 94
movement of
automatic 65
manual 65-66
updating 65
EOFERR [55]
EOR 31
error(s) [124]
bootstrap [128]
device call [125]
filecall [125]
messages [123-130]
numbers range 160
reporting, SOS call 160
SOS
fatal [124], [126]
general [124]
non-fatal [124]
utility call [126]
event(s) 5, 104-115
any-key 105
arming, example 129
arming and response 105, 108,
125
attention 105
detectingan 105
disarming 108
existing 108
fence 106, 109-110

20-21

170 SOS Reference Manual

handler(s) 5,107,110-111,125
address of 108
examples 129
handling 106, 107
system status during 111
identifier (ID) 108
mechanism, sample 126, 129,
139
priority 105, 108
processing 106
queue 106, 108-109
order 109
overflow [127]
summary of 112
EVQOVFL [127]
examples
code fragments xviii
sample programs xviii
executing
code segments 27
interpreter code 10
execution
environment 16-22
speed 19
ExerSOS [113-119]
EXFN 145
extended to bank-switched
address conversion 34-35
extension byte 14,31 (Seealso
X-byte)
extension, pointer address 154
EXTERNAL PROCEDURE 145
eye symbol xv

F

FCB 52
entry 53,62

FCBERR [128]

FCBFULL [54]
fence [91], [93]
fence, event 106, [91], [93]

field(s)
formats 89-92
bank-pair 14
pointer 79
FIFO (first-in, first-out) 109
FILBUSY [55]
file(s) 7-8,52
assembly-languagecode [133]
block 50-56, 62
allocation for sparse 98
call(s) 69-73,[2]
errors 160, [125]
character 50-56, 57
closed 52-53
closing before TERMINATE
[103]
code 145
partofacode [135]
control block 64
copying sparse 98
creating interpreter 143
data formats of relocatable
assembly-language code
146
defined 50
directory 57-58
format 78-92
relocatable 120
orabsolute 143
reading 91-92
empty 65
entry (entries) 78, 85-89
inactive 86, 89
sapling 89
seedling 89
subdirectory 89
tree 89
information 62-64
input/output 67
interpreter, creating an 143
level, system 66
managementcalls 5

maximum capacity ofa 94
name(s) 58-59, 60
illegal 59
legal 59
syntax 59
open 52-53,63
operationson 68
organization 76-99
code [132]
sapling 93,95
seedling 93,95
SOS 56-62
sparse 63,94, 97-98
standard 57-58
locating a byte in 98-99
storage formats of 92-99
structure
common 3
hierarchical 8
ofablock 50-51
of a character 50-51
of asapling 96
of aseedling 95
ofatree 96
subdirectory 57,78
system
relationship to device
system 57
rootof 59
SOS 55-62
tree 61
top-level 57
tree 94, 96-97
growinga 92-95
type 68
volume directory 77
file_count 82,85
file_name 60, 63, 80, 83, 87
file_type 64,87 91, [4],[13], [18]
FIND _SEG 26,30, 121,122,
[77-79]
flexible disk 42,77, 93, [109]

floppy disk See flexible disk
flow of control 27
FLUSH 66,72, [37], [41-42]
FNFERR [54]
form
bank-switched 13
current-bank-switched 13
ofaSOScall 148,160
format(s)
absolute or relocatable 143
date and time 90
directory file 78
of attribute table [137]
of directory files 78
of information on avolume 77
of name parameter 159
of relocatable assembly-
language code files,data 146
relocatable 120
volume 77
free memory 23
datain 30
obtaining 121-124
segment allocated from 29
free_blocks [23]
.FUNC [136], [139]
FUNCTION 145
future versions
compatibility with 18
of SOS 91,92,93

G

general purpose communications
(RS232) [111]

GET_ANALOG 113,115,
[99-101]

GET__DEV_ NUM 43,44, 45,47,
[65]

GET_EOF 65, 66,68, 73, [49]

GET_FENCE 110, 114, [93]

GET_FILE__INFO 63,65, 68,70,
152, [17-21]

SOS Reference Manual

GET__LEVEL 66,69, 73, [53]
GET__MARK 66, 68, 72, [45]
GET__PREFIX 70, [27]
GET_SEG__INFO 26, [83-84]
GET__SEG__NUM 26, [85]
GET_TIME 80,112, 115, [97-98]
.GRAFIX [110]
graphics 16,[110]

area 16

device drivers 16
growing a tree file 92

H

hand symbol xv
handler
event 5,125
interrupt 5
handling an event 106, 107
hardware 8,10
independence 2
interrupt 105
header(s) 43,119
directory 78,79-82
subdirectory 82-85, 89
volume directory 79, 80, 89
header_pointer 89
heads 77
hexadecimal (hex) xviii
digit 12
numbers xviii
hierarchical file structure 8
hierarchical tree structure 56, 76
high—order nibble [117]
highest bank 11
pair 15
highest switchable bank 15, 18
highest-numbered bank 23
housekeeping functions 3

1
1/0
block 51
buffer 50,127
character 51
device-independent 67
ERROR [129]
implementation versus interface
76
warning 99
INCOMPATIBLE INTERPRETER
[129]
incrementloop 124
one-bank example of 124
incrementing a pointer 36-37
index block(s) 93,94, 95
master 94
maximum 94
sub- 94,96
index_block 99
indexed mode, zero-page 29
indexing 15
addresses 15
indirect
addressing 10
enhanced 10, 13-16, 27, 30,
31-32
normal 14
operation, normal 31
pointer(s) 154,156, 157
with an X-byte between $80
and $8F 158
with an X-byte of $80 157
indirect-X addressing 13
indirect-Y addressing 13
input(s)
analog 113
device 40
parameters [116]
input/output, file 67

interface versus implementation
76

warning 99
interface, SOS 76
intermediate form, bank-switched
addressesas 32
INTERP [139]
interpreter(s) 5, 16, 118-125, 145,
[132]

and modules 144
BASIC 145

code 10

executing 10
command [103]
environment 18-19
files, creating 143
language 118
maximum size of 18
memory

placement 18

requirements of 146
Pascal 145

returnto 29

sample(s) 125-142

listing, complete 131-142
stand-alone 118
structure of 119-121
table within 29, 30
INTERPRETER FILE NOT
FOUND [129]
interpreter-relative relocation
table [139]
interpreter’s

stack 19,110
zeropage 19
interrupt(s) 5, 104-115
conflicts between 104
handler 5, 22,104

IRQ 22

and NMI 20

ranked in priority 104
summary of 112

invalid
address 13
jumps 29

regions 15,16
INVALID DRIVERFILE [129]
io_buffer [31]
IOERR [72]
IRQ interrupts 20, 22
is_newline 67, 68, [33]

J
JMP 27-28, [139]
joy_mode [99]
joy_status [100]
joystick [99]
JSn-B [100]
JSn-Sw [100]
JSn-X [100]
JSn-Y [100]
JSR 27-28
jumps 29
inside module 29
invalid 29
valid 29

K

KERNEL FILE NOT FOUND
[130]

key pointer 87,92

keyboard 40

L
labels xix, 120
local 127
language interpreter 118
largest possible file 94
last_mod date and time 64, 88,
89-90, [14], [19]
field 89-90
LDA 31,[139]

SOS Reference Manual

leaving ExerSOS [119]
legal device names 42
legal file names 59
length 152, [3], [11], [17], [25],
[30], [67], [116]
letters 42,56
level 66, [51], [53]
level, system file 66
limit 23, 122, [75], [78], [83]
LIMIT 122
line-termination character 67
linked list 78
linker information [133]
linking
assembly-language modules
145
dynamic loading during 145
lists
required parameter 129,
150-152
optional parameter 152-154
loading
dynamic, during linking 145
assembly-language modules
145
routine [134]
loading_address 120, 121
locating a byte in a standard
file 98
logical
block 77
device 53
byte position 98
device(s) 40
accessinga 41
multiple 54
structures 76
logical/physical device
correspondence 54
loop, increment 124
low-order nibble [117]
LVLERR [56]

M
machine
abstract 2
storing the state of the 110
macro, SOS 126
Makelnterp [121-122]
management calls
device 5
file 5
memory 5
utility 5
manager, resource 2-3
manual movement of EOF and
mark 66
manuf_id 45, [70]
manufacturer 45
mark 51,53, 64-65, 68, 97, 98,
[45]
movement of, automatic 65
movement of, manual 65-66
marker, current position 51
master index block 94, 96, 97
maximum
number of access paths 53
capacity of afile 94
number of index blocks 94
size of an interpreter 18
MCTOVFL [127]
media, removable 53, 54
medium 42,53
MEM2SML [127]
memory 6-7,23
access techniques 27-38
addressing, bank-switched
10-13
allocation 25,121
bookkeeper 7
call(s) 25-27
errors 160
conflict 121
avoiding 121

management 7

calls 5

obtaining free 121-124

placement

interpreter 18

module 144

SOS device driver 21

SOS Kernel 20

S-bank 19

segment 7

size, maximum 6,10

unswitched 28
messages, error [123-130]
min_version 81,84, 88
mode(s)

absolute addressing 29

addressing 10-16

enhanced addressing 8

newline information 67

zero-page addressing 29

indexed 29
modification date and time 68
module(s) 5, [132]

absolute 143

addressing 27-29

assembly-language 19, 118,

143-146

linking 145

BASIC invokable 145

creating 146

driver 41

execution, bank-switching

for 30

formats 146

loader [134]

Pascal 145

program or data access by 145

relocatable 143, 146, [132]
multiple

access paths 52

logical devices 54

volumes 54

N

name(s) 60,68

device 60

file 58-59, 60

local 59

parameter 159-160

volume 55-56, 60
name_length 80, 83, 87
naming conventions 76
new_pathname [9]
NEWLINE 67,68, 869,71, [33-34]
newline

character 67

mode 67
newline_char 67, 68, [33]
newline-mode information 67

nibble

high-order [117]

low-order [117]
NMI 114

interrupts 20
NMIHANG [127]

NORESC [72]
notation xviii
and symbols xviii
bank-switched address 15,
23
extended address 15
numeric xviii
segment address 23-27
NOTBLKDEV [56]

NOTOPEN [72]
NOTSOS [55]
NOWRITE [72]
null characters (ASCII $60) 97
number(s)
decimal xix
device 44

hexadecimal xiv
reference 52
slot 44
changing 46

176 SOS Reference Manual

unit 44
version 45
numeric notation xviii, Xix

o
OPEN 52,53,68,69, 71, [29-32]
call,example 128
operating system 2-3
defined 2
operations
asynchronous 5
normal indirect 31
on devices 45-46
on files 68
sequential read and write 50
opt_header 120
opt_header_length 120
option_list 152, [3], [11], [17],
[29], [67]
optional parameter list 152-154,
[x]
ORA 31
order of event queue 109
organization, code file [132]
OUTOFMEM [56]
output device 40
overview of the Apple lll 3-8
OVRERR [54]

P
page(s) 23,[31],[78],[81],[83]
part of segment address 25
parameter(s)
format of aname 159
input [116]
list,
optional 152-154, [x]
required 129, 150-152, [x]
name 159-160
passing 145
pointer 145

parent_entry_length 85
parent_entry_number 85
parent_pointer 85
parm_count [xi]
parm_list 149
Pascal 118, 143, [132]
and BASIC modules 145
assembler 145, [134]
interpreter 145
prefix 62
program 145
versus SOS prefixes 62
path(s)
access 52
information 64-66
multiple 52
maximum number of 56
pathname [3], [7], [9], [11], [17],
[25], [29]
pathname 52, 59-61
full 62
partial 61-62
syntax 60
valid 61
PERFORM 145
period 42,56
peripheral device 8, 104
physical device 40,54
correspondence with logical
devices 54
PNFERR [54]
point, decimal xix
pointer(s) 31,69, 152
address extension 154-159
byte order of 79
comparing two 37
direct 154, 155-156
tocurrent 156
to X-bank 155
extended 123
fields 79
incrementinga 36-37

indirect 154, 156-159
manipulation 36-38
parameters 145
preceding-block 78
self-relative [136], [138]
three-byte 98
POSNERR [55]
prefix(es) 60, 61-62
Pascal 62
restrictionson 62
SOS 62
versus Pascal 62
.PRINTER [111]
printers 40
priority of zero 108
priority-queue scheme 108
.PRIVATE [138]
.PROC [136],[139]
procedure(s) [135], [136]
attribute table [136]
code [136]
dictionary [135]
entries [136]
PROCEDURE NUMBER [138]
procedure-relative relocation
table [139]
processing an event 106
Processor, Apple Il xvii
Product Support Department 45
program
execution, restrictionson 14
exiting from 66
programming
assembly-language xiii
restrictions, circumvention of
SOS 3
psuedo-opcode(s) [136]
.FUNC [136]
.PRIVATE [138]
.PROC [136]
.PUBLIC [138]
.PUBLIC [138]

Q

queuing an event 106

R
range, X-byte 15
READ 67,68, 71, [35-36]
read and write operations,
sequential 50
read-enable bit [12], [18]
reading a directory file 91
ref_num 52,64, 67, [2], [29], [33],
[35], [37], [39], [49]
[41], [43], [45], [47]
references, relocation [138]

regions
invalid 15,16
risky 15,16

release memory 25

RELEASE__SEG 27, [87]
relocation 146

constant [138]
information 145
references [138]
table(s) [138]
base-relative [138]
interpreter-relative [139]
procedure-relative [139]
segment-relative [139]

RELOCSEG NUMBER [138]

RENAME 69, 90, [9-10]

req_access [30]

request_count [35], [37]

REQUEST _SEG 25,121, [75-76]
call 30

required parameter list 129,
150-152, [x]

example 129

resource manager 2-3
defined 2

resources 112-114

178 SOS Reference Manual

restrictions
addressing 15
bank-switching 28
on program execution 14
result 69, 151
return to interpreter 29
risky regions 15,16
addresses 32
avoiding 37
warning 32
ROM ERROR: PLEASE NOTIFY
YOUR DEALER [130]
root of file system 59
.RS232 [111]

S
S-bank 11, 23,28
address 12,38
in segment notation 25
locations, directpointersto 155
memory 19
sample programs, examples xiv
sapling file 93,95
entry 89
structureofa 96
SBC 31
scheme, priority-queue 108
SCP 43

screen 40
search_mode [77]
sectors 77
seedling file 93, 95
entry 89

structure ofa 95
seg_address [85]

seg_ id [75], [78], [83]
seg_num [76], [78], [81], [83],
[85], [87]

segment 23-24
address 24,38
bank partof 25
conversion 33-35

notation 23-27
page partof 25
allocated from free memory 29
dictionary [132], [134]
memory 7
of memory, allocatinga 121
to bank-switched address
conversion 33
to extended address conversion
33
segment-relative relocation
table [139]
SEGNOTFND [88]
SEGRODN [88]
SEGTBLFULL [88]
sequential
access 51
devices 7
read and write operations 50
serial printer (.PRINTER) [111]
SET_EOF 66, 68, 72-73, [47-48]
SET__FENCE 107,110, 114, [91]
SET__FILE__INFO 63,68, 70,88,
90, 152, [11-16]
SET__LEVEL 66,73, [51]
SET__MARK 66, 68, 72, [43-44)
SET__PREFIX 70, [25-26]
SET_TIME 90, 112, 115, [95-96]
slash (/) 56,60
slot number 44
change 46
ofzero 44
slot_num 44, [68]
software, common foundation
for 2,3
Sophisticated Operating System
See SOS
SOS «xvii, 3,5-6, 16, 104
1.1 xix, [106]
1.2 18,77,81,82, 84,85, 88, 92,
93, 95, 99, 105
1.3 xix, [106]

bank 11

call{s) 8

block [103]
formerror 160
reporting 160-161
form of 148-154, 160
types of 148

device

driver
environment 20-21
memory placement 21

system 43
disk request 55
errors

fatal [124], [126]
general [124]
non-fatal [124]
file system 56, 58
future versions of 91,92, 93
implementation 76
interface 76
Kernel 19
environment 19-20
memory placement 20
macro 126
for SOS call block 126
prefix(es) 62
versus Pascal 62
programming restrictions,
circumventionof 3
specifications [105-111]
supportfor 76
system 104
versions Xix, [106]
SOS.DRIVER 6, 41
SOS.INTERP 118
SOS.KERNEL 6, 41
sparse file(s) 63,94, 97-98
block allocation for 98
copying 98
special symbols xv
STA 31

stack 17,20
interpreter's 145
overflow [127]
pages 19
stand-alone interpreter 118
standard device drivers [109-111]
standard file(s) 57-58
locating a bytein 98-99
storage formats of 92-99
state of the machine, storing
the 110
status request
$09, block device [60]
$01, character device [60]
$@2, character device [61]
status_code [59]
status_list [60]
STKOVFL [127]
stop symbol xv
storage formats
directory headers 76
entries 76
of standard files 92-99
storage type 64,80, 83, 87, 89,
92, 95, 96, 97, (5], [19]
string buffer [117], [118]
structure(s)
hierarchical tree 56, 76
logical 76
of a sapling file 96
of a seedling file 95
of atreefile 96
of an interpreter 119-121
of block files 50-51
of character files 50-51
sub_type 44,45, [69]
subdirectory (subdirectories) 8
file(s) 57,78
entry 89
header 82,83, 89
subindex block 94, 96
subroutine addressing 27-29

SOS Reference Manual

summary
of address storage 38
of interrupts and events 112
switchable bank 11
highest 15,18
symbol(s)
eye Xix
hand xix
stop xix
vi2 xix
syntax
device name 42
file name 59
pathname 60
volume name 56
System Configuration Program
(SCP) 41,46
system
clock 112
configuration time 104
file level 66
operating 2-3
status during event handling 111

T
table
procedure attribute [136]
within interpreter 29, 30

Technical Support Department
146

TERMINATE 114,115,126, 131,
[xi], [103]
call,coding 131
closing files before

termination character
[64]

three-byte
address 13
pointer 98

[103]
67, [61],

time
date and
creation 64, 81,84, 88, 89-90
format 90
last mod 64, 88, 89-90, [14],
(19]
time pointer [95], [97]

time-dependent code 104
timing loop 19, 104
TOO MANY BLOCK DEVICES
[130]
TOO MANY DEVICES
TOOLONG [128]
top-level files 57
total_blocks 45, 82, [23], [70]
tracks 77
transfer control 28
transfer_count [36]
tree file 94, 96-97
entry 89
growinga 92-95
structureofa 96
tree structure, hierarchical 56
tree, file system 61
TYPERR [55]

[130]

u
unit number 44
unit_num 44, [68]
unsupported storage type
(TYPERR) [55]
utilities disk 41
utility
cali(s) 114
errors 160, [126]
management 5

v

v1.2symbol xix
and other versions Xix

valid
jumps 29
pathnames 61
value 69, 151
value/result parameter 152
VCBERR [128]
version 81, 84,88
number 45
version_num 45, [70]
VNFERR [54]
vol_name 60, [23]
VOLUME 70, [23-24]
volume(s) 53-54,76
bitmap 77,93
blocksona 77
directory 54,57,78,93
file 77
header 79, 80, 89
formats 77
multiple 54
name(s) 42,55-56,60
advantages of 56
syntax 56
switching 54-55
volume/device correspondence
54

w
warning
address conversion 123
interface versus implementation
99
on accessing zero page and
stack 17
on pointer conversions 155
on sample interpreter 125

pointer
direct 156
indirect 158, 159

risky regions 32
termination 114
unallocated memory 121

WORD [139]

words [133]

WRITE 68,71, 90, [37-38]
write-enable bit [12], [18]

X
Xregister 14
X-bank, direct pointersto 155
X-byte 14,15,31,145
between $80 and $8F, indirect
pointers withan 158
format 14
of $@9, indirect pointers with
an 157
of $8F 16
range 15
X-page 145

Y
Y-register 15,32

4
zero
interpreter's 19
page 15,17,20,29
andstack 17,20
warning on accessing 17
conflicts with 16
priority of 108
zero-page addressing mode 29
zero-page indexed addressing
mode 29

Special Symbols and Numbers
&v12 81,8284
$ xviii, xix
$0 16
$8F 16
6502 xvii
instruction set 8

e

. R
.

s aPple computer

20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010
TLX 171-576
030-0441-A

